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Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

An alphabet is a finite set of symbols. Ex.:

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Σ = {A, C, T, G} 

Σ = set of Part-Of-Speech tags  

Σ = {0, 1}, usually denoted {a, b}

A word/string on an alphabet is a finite sequence of 
symbols 

000042 or 84 or ε

VBN-TL  NNS-TL  IN-TL  NP-TL      



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

A language over an alphabet is a (possibly non-
finite) set of strings over this alphabet.

L = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

L = all natural numbers

L = all DNA sequences that correspond to a gene

L = all POS tag sequences that correspond to an English 
sentence

L = {anbn : n>0}    



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

If a language is infinite (or too big to be finitely 
represented), we need a finite representation to be able 
to handle it : we call this representation a grammar.

Well-known grammar classes : the Chomsky hierrachy

Regular grammars: productions A→aB or A→ε

Context-free grammars: A→BC or A→a (normal form)

Context sensitive grammars: αAβ→αγβ

With each of these classes of grammars is 
associated a class of languages.



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

DFA:

Regular grammars:

 Q0 → b Q0, Q0 → a Q1, Q0 → ε

         Q1 → b Q1, Q1 → a Q0         

Q1Q0

ab

a
                          b



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N →  (N U Σ)*

A special non-terminal (the axiom) : S

The language represented by a context-free grammar 
is the set of strings over Σ that one can obtain from 
the axiom using the rules of P. 



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N →  (N U Σ)*

A special non-terminal (the axiom) : S

Example: Σ={a, b}, N={S}, P={S → a S b, 
S → a b }

What is the language of this grammar?



Some basic definitions Some basic definitions 
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N →  (N U Σ)*

A special non-terminal (the axiom) : S

Example: Σ={a, b}, N={S}, P={S → a S b, S → a b }

     What is the language of this grammar?

{anbn : n>0}

 n = 3: S → a S b →a a S b b → a a a b b b              
       We write S →* aaabbb 



Grammatical InferenceGrammatical Inference

We are interested in algorithms that are able to learn a 
class of languages using a given class of grammars:

A learning algorithm is fed with data corresponding to an 
unknown language of the class,

It outputs a hypothesis (i.e. a grammar of the class) that is a 
representation of a language,

If the outputed grammar is an “acceptable” representation 
of the unknown language then the algorithm has learnt the 
language

If it can learn all languages of the class, then we say that 
the algorithm learns the class.



Grammatical InferenceGrammatical Inference

 When can we say that an algorithm is able to learn?

Experimentally validate (e.g. Cross-validation)

Fulfills conditions of a formal definition of learning

Corpus

a a a a a b b b b b Yes

b a b b b a a b b No

a b b  No

a a a a a a a a a a a  b b b b b b b b b b b Yes

a b a b a b a b No

a b Yes

Learning 
sample

test sample



Grammatical InferenceGrammatical Inference

When can we say that an algorithm is able to learn?

Practically validate (e.g. cross-validation)

Fulfills conditions of a formal definition of learning:
Probably Approximatively Correct (PAC) paradigm

The probability that the error rate of the output h of 
the agorithm is greater than a epsilon is less than a 
delta:  Pr(error(h) < ε) > 1 - δ 



Grammatical InferenceGrammatical Inference

When can we say that an algorithm is able to learn?

Practically validate (e.g. cross-validation)

Fulfills conditions of a formal definition of learning:
Probably Approximatively Correct (PAC) paradigm

Identification in the limit

Input: an infinite (complete) sequence of data

Behaviour: for each new data a hypothesis is outputed

Learning: for each possible sequence, there exists a 
moment at which the algorithm converges to a 
hypothesis that is equivalent to the target grammar, 
and it never changes its hypothesis after.



Grammatical InferenceGrammatical Inference

What kind of data?

Examples (of sentences, DNA codes, bird songs, ...)

Example and counter-examples 

Structured examples (trees, skeletons, ...)

Queries to an oracle

...



Grammatical InferenceGrammatical Inference

Nice results for regular languages:

Efficient identification from positive and negative 
examples, RPNI [Oncina & Garcia, 92]

Identification from positive examples only of subclasses: 
reversible [Angluin, 82], locally testable, ...

PAC-learning of the whole class from positive examples 
(with restrictions on the distribution of examples) [Clark 
& Thollard, 02]

Learning of the whole class using membership and 
equivalence queries [Angluin, 87]



Grammatical InferenceGrammatical Inference

Nice results for regular grammars:

Few postives results for context-free grammars 
(prior to the works presented today)

Efficient identification of small subclasses from postive 
and negative examples (reduction to the regular case)

Identification of a very restrictive subclass from positive 
examples (very simple grammars [Yolomori, 02])

The whole class from skeletons [Sakakibara, 92]

No positive result for contex-sensitive grammars



Grammatical InferenceGrammatical Inference

Why are regular languages a success story?

Strong link between the representation and the structure 
of the language (residual, Nerode equivalence 
classes, ...).

Slogan: “The structure of the representation should 
be based on the structure of the language, not 
something arbitrarily imposed on it from outside”

Identify some structure in the language

Show how that structure can be observed

Construct a representation based on that structure
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Key ideaKey idea

Learn a structurally defined class of languages

Use only examples of the language
Rely on the notion of Context: 

A string u appear in the context (l,r) in a string w if 
w=lur.

The set of all contexts of u in a language L is written 
CL(u) = { (l,r) : lur in L}.

For instance, the substring ab appears in the context 
(a,b) in  the word aabb. 



  

Syntactic congruenceSyntactic congruence

Well-studied relation structuring languages 

u and v are syntactically congruent w.r.t. a 
language L iff for all l,r in Σ*, lur is in L iff lvr is 
in L (u ≡Lv).

In term of context, u ≡Lv iff CL(u) = CL(v).
[u] is congruence class of u, i.e. the set of all 
substrings v such that u ≡Lv

Example: L={bcb,baab,cb,aab}, c≡Laa, bcb≡Lbaab, 
[bcb] = [baab] ≠ [cb] 



  

A weaker relation A weaker relation 

The weak substitutability: 

u and v are weakly substitutable w.r.t. a language 
L, iff there exist l,r in Σ*, lur is in L iff lvr is in L  
Notation : u ≈L v

In term of set of contexts, u ≈L v if and only if 
CL(u)∩CL(v)≠ø



  

SubstitutabilitySubstitutability

The syntactic congruence is the most interesting: u and v 
always appear in the same context (then they can be 
generated by the same non-terminal, for instance).

But: from a finite set of examples, we can only observe 
the weak substitutability. 

We can unify these notions in order to ensure the 
observability of the syntactic congruence



  

Substitutable languagesSubstitutable languages

A language L is substitutable iff for all u and v in 
Σ*, u ≈L v implies u ≡L v,  i.e. the weak 
substitutability implies the syntactic congruence.

The sets of contexts of two substrings of words of L 
are either disjoint or identical.
In other words:

    If lur, lvr and l'ur' are in L then l'vr' is in L. 



  

ExamplesExamples

Σ* is substitutable.
{an |n>0} is substitutable (all contexts of a substring 
have the form (ak,al)).
{wcwR|w in (a,b)*} is substitutable.
{an cbn |n>0} is substitutable.
{w : |w|a = |w|b and |w|c= |w|d} is substitutable. 

{an bn |n>0} is not substitutable: for instance, we 
have a ≈L aab but not a ≡L aab

{a,aa} is not substitutable (a and aa share the 
context (ε,ε) but not the context (ε,a))



  

Algorithm: main ideasAlgorithm: main ideas

We want to compute the syntactic classes of the language 
from the examples, together with their mutual structure.

We are going to use the fact that [u][v]  [uv] by creating ⊆
the rules [uv] → [u][v]

Algorithmic trick: the Substitution graph 
each distinct substring of the learning sample is a node.

There is an edge between two nodes if they appear in the 
same context(s).



  

Running ExampleRunning Example
LS={c;aca;bcb;abcba;aacaa} (palindrome with a center marked)

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example
LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                        ac

bcb                                           ca                      aaca

 aacaa

a        b   ab   abcb     … 

bc     ba     aac         caa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

First step: create a non terminal for 
each component.

[c] (=[aca]=[abcba]=[bcb]=[aacaa])

[ca] (=[bcba]=[acaa])

[ac] (=[abcb]=[aaca])

But also: [ab], [abcb], [bc], [aac], [ba]…



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Next step: create the rules for the 
letters of the alphabet.

[a] → a

[b] → b

 [c] → c

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Third step: create the rules for 
each component.

[w] → [u][v] when uv is a 
member of  the component of w.

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Component (ε,ε):

[c]→[a][bcba], [c]→[ab][cba], c→[abc][ba], [c]→[abcb][a]

[c]→[a][ca], [c]→[ac][a]

[c]→[b][cb], [c]→[bc][b]

[c]→[a][acaa], [c]→[aa][caa], [c]→[aac][aa], [c]→[aaca][a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Component (ε,ε):

[c]→[a] [ca], [c]→[ab] [cba], [c]→[abc] [ba], [c]→[ac] [a]

[c]→[a] [ca], [c]→[ac] [a]

[c]→[b] [cb], [c]→[bc] [b]

[c]→[a] [ca], [c]→[aa] [caa], [c]→[aac] [aa], [c]→[ac] [a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Component (ε,ε):

[c]→[a] [ca], [c]→[ac] [a],

[c]→[ab] [cba], [c]→[abc] [ba], [c]→[b] [cb], 

[c]→[bc] [b], [c]→[aa] [caa], [c]→[aac] [aa],

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Component (a,ε): (final result)

[ca] → [c] [a], [ca] → [ac] [aa]

[ca] → [b] [cba], [ca] → [bc] [ba], [ca] → [a] [caa]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Component (ε,a): (final result)

[ac] → [a] [c], [ac] → [aa] [ca]

[ac] → [ab] [cb], [ac] → [abc] [b], [ac] → [aac] [a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Components of one string:

[ab] → [a][b], [aac] → [a][ac], [aac] → [aa][c], 
[aa] → [a][a] …

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a        b   ab   abcb     … 

bc     ba     aac         caa



  

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

Outputed grammar: G=< {a,b,c}, V, P, [c] > 

where P = {[a] → a, [b] → b,  

[c] → [a][ca] | [ac][a] | c, [ca] → [c][a], [ac] → [a][c], 

[c] → [ab][cba] | [abc][ba] | [b][cb] | [bc][b] | [aa][caa] | [aac][aa] 

[ca] → [ac][aa] | [b][cba] | [bc][ba] | [a][caa]

[ac] → [aa][ca] | [ab][cb] | [abc][b] | [aac] [a]

[ab] → [a][b]                                                                  We can show that this 

[aac] → [a][ac] | [aa][c]                                                 grammar generates the

[aa] → [a][a]                                                                  language of palindromes 

…       }                                                                          with a center marked.



  

Learning ResultLearning Result

The algorithm identifies polynomially in the limit 
the class of context-free substitutable languages.

The polynomial bounds are on
 Computation: it takes a polynomial time in the size of 

the learning sample to run the algorithm.

 Data: for each substitutable language, there exists a 
characteristic sample whose cardinality is 
polynomial in the size of the target.

   



  

Substitutable context-free and 0-Substitutable context-free and 0-
reversible regular languagesreversible regular languages

A regular language is 0-reversible if whenever uw 
and vw are in the language then ux is in the 
language iff vx is in the language [Angluin, 82]. 

Substitutable languages are the (context-free) exact 
analogue of 0-reversible languages (regular).



  

Direct ExtensionsDirect Extensions
This work [Clark & Eyraud, 05, 07] generated different 
extensions 

Identification of k-l substitutable languages [Yoshinaka, 08]

PAC-learning of unambigous NTS languages [Clark, 06], of 
subclasses of CFG [Shibata&Yoshinaka, 16]

Local substitutable languages [Coste, Garet & Nicolas, 12]

Substitutable tree languages [Kasprzik & Yoshinaka, 11]

Substitutable graph languages [Eyraud, Janodet, Oates, 12&16]

Identification with the help of an oracle of congruential 
context-free laguages [Clark, 10], conjunctive grammars 
[Yoshinaka, 15], Parallel Multiple CF grammars [Clark & 
Yoshinaka, 14]

Heuristics have preceded theory [Harris, 54], [Brill et al., 90] 
[Adriaans, 99], [van Zaanen, 00] [Klein & Manning, 02], ...



  

Substitutable Languages and Substitutable Languages and 
Natural LanguagesNatural Languages

Natural languages are obviously more complex, but 
substitutable ones can give nice insights into some 
linguistic disputes.

Ex.: Auxiliary fronting in polar questions

Sentences like 'Is the man who is hungry ordering Is the man who is hungry ordering 
dinner?dinner?' are unlikely to be present in a child environment.' are unlikely to be present in a child environment.

However, it has been shown that children are quickly able However, it has been shown that children are quickly able 
to identify it as correct and reject the wrong sentence 'to identify it as correct and reject the wrong sentence 'Is 
the man who hungry is ordering dinner?'

Used as a clue in defence of the theory of innate 
knowledge of native language.



  

A (very) simple exampleA (very) simple example

  S = { the man who is hungry asked a beer. 

            the man asked a beer. 

            the man is hungry. 

            the man is ordering dinner. 

            is the man hungry? }

(+) is the man who is hungry ordering dinner?

(-)  is the man who hungry is ordering dinner?

Our algorithm can identifies correct structure from incorrect 
one without any example on this particular structure in 
the sample. 



03/30/18   44

Outline

Introduction

Learning Substitutable languages

Prime congruence classes

Extension to tree and graph grammars

A dual approach

Conclusion



  

Congruencial classesCongruencial classes

Recall: Given a language L, [u] is the congruence class of u, 
that is the set of all substrings v such that u ≡Lv

If the language is not regular : an infinite number of 
congurence classes

However, substitutable (and others) can be represented by a 
finite number of them             



  

Prime congruence classesPrime congruence classes

Two particular congruence classes:

The unit: [ε]

The zero: 0 = {u : for all (l,r), lur is not in L}

A congruence class X is prime if it is non-zero and non-unit 
and for any two congruence classes Y, Z such that          
X = Y · Z then either Y or Z is the unit. 
If a non-zero non-unit congruence class is not prime then 
we say it is composite.



  

Prime congruence classesPrime congruence classes

Example: L={ancbn : n ≥0}

[ε]={ε} and 0=Σ*baΣ*: not prime by definition, 

L : prime (because L=[c]=[aca]≠[a][ca]={ancbn : n ≥1})

[a] = {a} and [b] ={b} : both prime

[ai]={ai}=[a][ai-1] with i>1: not prime (same for b)

[aic] = {ai+jcbj : j ≥ 0} and [cbi] = {ajcbj+i : j ≥ 0} : not 
prime

Note: L = {ab} has 5 congruence classes: [a], [b], [ab], [ε] 
and 0. The first 4 are all singleton sets. [a] and [b] are 
prime but [ab] = {ab} = [a][b], and so L is not prime.



  

LLscsc

L
sc
 : the set of all languages which are substitutable, 

non-empty, do not contain ε, and have a finite 
number of prime congruence classes.

Example: {ancbn : n ≥0}

Counter-example: L={cibaib : i>0}  {c∪ ideid : i>0}

CF and substitutable

But for all i, C
L
(baib) = {(ci, ε)} = C

L
(deid)  

Infinite number of classes [baib]=[deid]={baib, deid}, 
each of which is prime.



  

Prime decompositionPrime decomposition

A prime decomposition of a congruence class X is a 
finite sequence of one or more prime congruence 
classes α = <X

1
 , . . . , X

k
> such that X = X

1
X

2
...X

k

Lemma: Every non-zero non-unit congruence class 
of a language in L

sc
 has a unique prime factorisation



  

Correct rulesCorrect rules

Correct production: [ ] → α where α is a sequence ᾱ
of at least 2 primes and [ ] is a prime congruence ᾱ
class. 
A correct lexical production is one of the form 
[a]→a where a  Σ, and [a] is prime.∈

Ex: L = {a n cb n | n ≥ 0}. Primes: [a], [c], [b]. 
The correct lexical productions are the three obvious 
ones [a]→a, [b]→b and [c]→c. 
The only correct productions have [c] on the left 
hand side, and are [c]→[a][c][b], [c]→[a][a][c][b]
[b] and so on.



  

Too long rulesToo long rules

We say that a sequence of primes α is pleonastic (too 
long) if α = γβδ for some γ, β, δ, which are 
sequences of primes, such that |γ| + |δ| > 0, [ ] is a ββ
prime, and |β| > 1

A rule is too long if its right handside is too long. It 
is valid otherwise



  

Canonical grammarCanonical grammar

Lemma: If L  L∈
sc
 then there are a finite number of 

valid productions

Let L in L
sc.

. Its (unique) canonical grammar G
*
(L):

Non-terminals: the prime congruence classes of L, together 
with an additional symbol S (the start symbol). 

Productions: 
the single production containing the start symbol: S → α(L), where 
α(L) be the unique prime decomposition of L.  

All valid productions

The production [a]→a, for each terminal symbol a that occurs in the 
language

Theorem: the language of G
*
(L) is L



  

Learning resultLearning result

The previous algorithm can be adapted to output 
only canonical grammars: it identifies in the limit 
the class L

sc

Moreover, it learns exactly the target grammar 
(=language + structure): strong learning

Corrolary: it learns trees from strings!
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Extension to treeExtension to tree
Instead of strings the data are trees

The grammars are Simple Context Free Tree Grammar



  

Extension to treeExtension to tree

All we need is the transposition of the notions of 
context, subtree and a gluing mechanism.



  

Distributional learning of tree Distributional learning of tree 
languageslanguages

[Kasprzik & Yoshinaka, 11]:

r-substitutable context-free tree languages are efficiently 
identifiable in the limit from positive tree examples.

r-SCFTG with p-finite environment are identifiable from 
positive presentation using a membership oracle.

The algorithms are simple adaptation to trees of the ones 
for the strings.



  

Extension to graphsExtension to graphs

Again, we need to define what a context is, what a 
subgraph is, and how to glu them together.

But we also need to restrict ourselves as general 
graphs are too complex:

We need tractable isomorphism (and sub-isomorphisme) 

We need a grammar formalism where it is polynomially 
doable to test whether a given graph is in the language

Plane graphs are good candidate: polynomial 
decidable sub-isomorphism. 



  

Plane GraphPlane Graph
Embeddings of planar graph in the plan: 

  
(a) (b)

Class of isotopy

v1 v
3

v
6

v
2

v
4

v
5



  

SubstitutabilitySubstitutability

In a substitutable plane graph language, whenever 
two plane graphs appear in the same context once, 
they share the same set of contexts.



  

Learning resultLearning result

[Eyraud, Janodet, Oates, 16]: Substitutable plane 
graph languages are identifiable in the limit from 
examples of the language

Promising research

Languages are close under isomorphism. 

First non-trivial class of graph grammars to be learnable

Algorithm is not efficient

Hard to extend to more complex kind of graphs
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Distributional LearningDistributional Learning

A new familly of approaches to handle grammar 
induction:

“Observe, model, exploit the relation between substrings 
and contexts” 

Primal (ex: substitutable): a non-terminal represent a 
(set of) string that appear in the same contexts: if [u] 
→* v then CL(u) = CL(v)

Dual: a non-terminal represent a (set of) context and 
generates only strings that appear in this context: if 
[(l,r)] →* u then u ∈{w : lwr in L} = SL(l,r)



  

An exampleAn example

L = {anbn : n≥0} 

Observation table: 

(ε,ε) (a,ε) (ε,b) (a,b)

ε yes no no yes

a no no yes no

b no yes no no

ab yes no no yes

aab no no yes no

abb no yes no no

aabb yes no no yes



  

An exampleAn example

L = {anbn : n>0} 

Observation table: 

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1



  

An exampleAn example

L = {anbn : n>0} 

Observation table: 

Primal: similar lines (or similar parts of different 
lines) may correspond to the same non-terminal

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1



  

An exampleAn example

L = {anbn : n>0} 

Observation table: 

Dual: similar columns may correspond to the same 
non-terminal

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1



  

An exampleAn example

L = {anbn : n>0} but we only “see” the 
sample S={ab, aabb} 

Observation table: 

Ask an oracle for the missing information

(ε,ε) (a,ε) (ε,b) (a,b)

ε ? ? ? 1

a ? ? 1 ?

b ? 1 ? ?

ab 1 ? ? 1

aab ? ? 1 ?

abb ? 1 ? ?

aabb 1 ? ? ?



  

An exampleAn example

L = {anbn : n>0} but we only “see” the 
sample S={ab, aabb} 

Real observation table: 

(ε,ε) (a,ε) (ε,b) (a,b) (aa,ε) (aab,ε) (ε,bb) (ε,abb) (aa,b) (a,bb)

ε ++

a ++ ++ ++

b ++ ++ ++

ab ++ ++

aa ++

bb ++

aab ++

abb ++

aabb ++



  

An exampleAn example

L = {anbn : n>0} but we only “see” the 
sample S={ab, aabb} 

Real observation table: 

(ε,ε) (a,ε) (ε,b) (a,b) (aa,ε) (aab,ε) (ε,bb) (ε,abb) (aa,b) (a,bb)

ε ++

a ++ ++ ++

b ++ ++ ++

ab ++ ++

aa ++

bb ++

aab ++

abb ++

aabb ++

Context set

Kernel



  

Learning principleLearning principle

Problem: if the language is not regular, there exists a 
non-finite number of syntactic congruence classes.

What we need is to restrict ourselves to classes of 
languages that are representable by finitely many 
congruence classes

Then we may observe these classes in the completed 
observable table constructed from a finite sample:

Either by considering similar rows (primal)

Or by considering similar column (dual)



  

Finite Context Property (dual)Finite Context Property (dual)

A CFG G = < Σ, N, S, P > has the (one) Finite Context 
Property iff every A N admits a characterizing ∈
context (l,r) such that SL(l,r)={v: N→* v}

Examples: all regular languages, parenthesis 
languages, ...

With enough data, one column of the observation 
table corresponds exactly to each non-terminal of the 
target grammar.

Adding new columns add new non-terminals (thus new 
rules)

Adding new lines remove incorrect rules 



  

Learning in the dualLearning in the dual

Grammar creation:
Non-terminals: [(l,r)], (l,r) in F
Rules:  [(l,r)] → a if lar in L  
[(l,r)] → [(l1,r1)][(l2,r2)]  if for all w1, w2 in K s.t. l1w1r1 and l2w2r2  in L        
                                   we have lw1w2r in L                  



  

Learning resultsLearning results

[Clark, 10 ; Yoshinaka, 11] 1-FCP (and 1-FKP) classes 
are identifiable in the limit from examples using a 
membership query with

An update time polynomial in the size of the sample
An number of queries polynomial in the size of the target 
grammar.

Extended to k-FCP (and k-Finite Kernel Property and k-
Finite Distributional Property where each non-terminal 
has either a characteristic context or characteristic 
string).
Extended to other classes of grammars: multiple CFG 
and parallel CFG.
Extended to PAC-learning results
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Introduction

Learning Substitutable languages

Extension to tree and graph grammars

A dual approach

Conclusion



  

Overall results (in 2012...)Overall results (in 2012...)

Graph form.

Clark, Eyraud & 
Habrard '08  (CBFG)

Eyraud, 
Janodet & 
Oates '12



  

Next stepsNext steps

Restrictions rely on a class of grammars (to make 
sure the language is representable by a finite number 
of congruence classes).

Use of a membership oracle (for the more complex 
classes).

Not practical that way but nice proof of concept.



  

MISC. citationsMISC. citations
John Myhill, 1950, commenting on Bar-Hillel

I shall call a system regular if the following holds for all 
expressions μ,ν and all wffs φ,ψ each of which contains an 
occurrence of ν: If the result of writing μ for some occurrence of ν 
in φ is a wff, so is the result of writing μ for any occurrence of ν in 
ψ. Nearly all formal systems so far constructed are regular; ordinary 
word-languages are conspicuously not so.

Noam Chomsky review of Greenberg (1959)

Let us say that two units A and B are substitutable1 if there are 
expressions X and Y such that XAY and XBY are sentences of L; 
substitutable2 if whenever XAY is a sentence of L then so is XBY 
and whenever XBY is a sentence of L so is XAY (i.e. A and B are 
completely mutually substitutable). These are the simplest and basic 
notions. (footnote 3. They are discussed by R. Carnap in The 
Logical Syntax of Language, 1934)



  

String Rewriting String Rewriting RuleRule

Introduced in 1914 by Alex Thue.
 

A string rewriting rule replaces a substring of a 
string by another substring.

Example: ab → ε
This rule replaces substings ab by ε, i.e. it erases 
substrings ab.

aabbab → abab → ab → ε



Running Example

 LS={c;aca;bcb;abcba;aacaa} (palindromes with a center marked)

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

a        b   ab   abcb     … 

bc     ba     aac         caa



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

a        b   ab   abcb     … 

bc     ba     aac         caa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Erase component made of 
a unique element.



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Reduced the graph:

If u and v are in the same 
component and u > v

Then replace every lur by lvr



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            acaa                     ac

bcb                                           ca                      aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            ca                     ac

bcb                                           ca                      ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 bcba                       abcb

abcba        aca                            ca                     ac

bcb                                           ca                      ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 ca                            ac

aca        aca                            ca                         ac

bcb                                           ca                      ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 ca                            ac

aca        aca                            ca                         ac

bcb                                           ca                      ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

For every pair (u,v) of disctinct 
substrings in the same component, 
creat a rule u → v (u > v).



Running Example

 LS={c;aca;bcb;abcba;aacaa}

           c                                 ca                            ac

aca        aca                            ca                         ac

bcb                                           ca                      ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Outputed SRS:

< {aca → c; bcb → c}, {c} >



  

Learning in the PrimalLearning in the Primal



  

Finite Kernel Property (primal)Finite Kernel Property (primal)

A CFG G = < Σ, N, S, P > has the (one) Finite Kernel 
Property iff every A N admits a characterizing string ∈
u such that CL(u)={(l,r):∃v, N→* v, lvr L(G)}∈

Examples: all regular languages, parenthesis 
languages, ...

With enough data, one line of the observation table 
corresponds exactly to each non-terminal of the 
target grammar.

Adding new lines add new non-terminals (thus new rules)

Adding new columns remove incorrect rules 


