
The basis of Distributional The basis of Distributional
Learning for the inference of Learning for the inference of

Non-Regular LanguagesNon-Regular Languages

Rémi Eyraud
Aix-Marseille Université
QARMA team
LIS

03/30/18 4

Outline

Introduction

Learning Substitutable languages

Prime congruence classes

Extension to tree and graph grammars

A dual approach

Conclusion

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

An alphabet is a finite set of symbols. Ex.:

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Σ = {A, C, T, G}

Σ = set of Part-Of-Speech tags

Σ = {0, 1}, usually denoted {a, b}

A word/string on an alphabet is a finite sequence of
symbols

000042 or 84 or ε

VBN-TL NNS-TL IN-TL NP-TL

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

A language over an alphabet is a (possibly non-
finite) set of strings over this alphabet.

L = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

L = all natural numbers

L = all DNA sequences that correspond to a gene

L = all POS tag sequences that correspond to an English
sentence

L = {anbn : n>0}

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

If a language is infinite (or too big to be finitely
represented), we need a finite representation to be able
to handle it : we call this representation a grammar.

Well-known grammar classes : the Chomsky hierrachy

Regular grammars: productions A→aB or A→ε

Context-free grammars: A→BC or A→a (normal form)

Context sensitive grammars: αAβ→αγβ

With each of these classes of grammars is
associated a class of languages.

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

DFA:

Regular grammars:

 Q0 → b Q0, Q0 → a Q1, Q0 → ε

 Q1 → b Q1, Q1 → a Q0

Q1Q0

ab

a
 b

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N → (N U Σ)*

A special non-terminal (the axiom) : S

The language represented by a context-free grammar
is the set of strings over Σ that one can obtain from
the axiom using the rules of P.

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N → (N U Σ)*

A special non-terminal (the axiom) : S

Example: Σ={a, b}, N={S}, P={S → a S b,
S → a b }

What is the language of this grammar?

Some basic definitions Some basic definitions
(Formal Language Theory)(Formal Language Theory)

Context-free grammars:

The alphabet of the language : Σ

A finite set of variables (called non-terminals) : N

A set of context-free rules: P ⊂ N → (N U Σ)*

A special non-terminal (the axiom) : S

Example: Σ={a, b}, N={S}, P={S → a S b, S → a b }

 What is the language of this grammar?

{anbn : n>0}

 n = 3: S → a S b →a a S b b → a a a b b b
 We write S →* aaabbb

Grammatical InferenceGrammatical Inference

We are interested in algorithms that are able to learn a
class of languages using a given class of grammars:

A learning algorithm is fed with data corresponding to an
unknown language of the class,

It outputs a hypothesis (i.e. a grammar of the class) that is a
representation of a language,

If the outputed grammar is an “acceptable” representation
of the unknown language then the algorithm has learnt the
language

If it can learn all languages of the class, then we say that
the algorithm learns the class.

Grammatical InferenceGrammatical Inference

 When can we say that an algorithm is able to learn?

Experimentally validate (e.g. Cross-validation)

Fulfills conditions of a formal definition of learning

Corpus

a a a a a b b b b b Yes

b a b b b a a b b No

a b b No

a a a a a a a a a a a b b b b b b b b b b b Yes

a b a b a b a b No

a b Yes

Learning
sample

test sample

Grammatical InferenceGrammatical Inference

When can we say that an algorithm is able to learn?

Practically validate (e.g. cross-validation)

Fulfills conditions of a formal definition of learning:
Probably Approximatively Correct (PAC) paradigm

The probability that the error rate of the output h of
the agorithm is greater than a epsilon is less than a
delta: Pr(error(h) < ε) > 1 - δ

Grammatical InferenceGrammatical Inference

When can we say that an algorithm is able to learn?

Practically validate (e.g. cross-validation)

Fulfills conditions of a formal definition of learning:
Probably Approximatively Correct (PAC) paradigm

Identification in the limit

Input: an infinite (complete) sequence of data

Behaviour: for each new data a hypothesis is outputed

Learning: for each possible sequence, there exists a
moment at which the algorithm converges to a
hypothesis that is equivalent to the target grammar,
and it never changes its hypothesis after.

Grammatical InferenceGrammatical Inference

What kind of data?

Examples (of sentences, DNA codes, bird songs, ...)

Example and counter-examples

Structured examples (trees, skeletons, ...)

Queries to an oracle

...

Grammatical InferenceGrammatical Inference

Nice results for regular languages:

Efficient identification from positive and negative
examples, RPNI [Oncina & Garcia, 92]

Identification from positive examples only of subclasses:
reversible [Angluin, 82], locally testable, ...

PAC-learning of the whole class from positive examples
(with restrictions on the distribution of examples) [Clark
& Thollard, 02]

Learning of the whole class using membership and
equivalence queries [Angluin, 87]

Grammatical InferenceGrammatical Inference

Nice results for regular grammars:

Few postives results for context-free grammars
(prior to the works presented today)

Efficient identification of small subclasses from postive
and negative examples (reduction to the regular case)

Identification of a very restrictive subclass from positive
examples (very simple grammars [Yolomori, 02])

The whole class from skeletons [Sakakibara, 92]

No positive result for contex-sensitive grammars

Grammatical InferenceGrammatical Inference

Why are regular languages a success story?

Strong link between the representation and the structure
of the language (residual, Nerode equivalence
classes, ...).

Slogan: “The structure of the representation should
be based on the structure of the language, not
something arbitrarily imposed on it from outside”

Identify some structure in the language

Show how that structure can be observed

Construct a representation based on that structure

03/30/18 20

Outline

Introduction

Learning Substitutable languages

Prime congruence classes

Extension to tree and graph grammars

A dual approach

Conclusion

Key ideaKey idea

Learn a structurally defined class of languages

Use only examples of the language
Rely on the notion of Context:

A string u appear in the context (l,r) in a string w if
w=lur.

The set of all contexts of u in a language L is written
CL(u) = { (l,r) : lur in L}.

For instance, the substring ab appears in the context
(a,b) in the word aabb.

Syntactic congruenceSyntactic congruence

Well-studied relation structuring languages

u and v are syntactically congruent w.r.t. a
language L iff for all l,r in Σ*, lur is in L iff lvr is
in L (u ≡Lv).

In term of context, u ≡Lv iff CL(u) = CL(v).
[u] is congruence class of u, i.e. the set of all
substrings v such that u ≡Lv

Example: L={bcb,baab,cb,aab}, c≡Laa, bcb≡Lbaab,
[bcb] = [baab] ≠ [cb]

A weaker relation A weaker relation

The weak substitutability:

u and v are weakly substitutable w.r.t. a language
L, iff there exist l,r in Σ*, lur is in L iff lvr is in L
Notation : u ≈L v

In term of set of contexts, u ≈L v if and only if
CL(u)∩CL(v)≠ø

SubstitutabilitySubstitutability

The syntactic congruence is the most interesting: u and v
always appear in the same context (then they can be
generated by the same non-terminal, for instance).

But: from a finite set of examples, we can only observe
the weak substitutability.

We can unify these notions in order to ensure the
observability of the syntactic congruence

Substitutable languagesSubstitutable languages

A language L is substitutable iff for all u and v in
Σ*, u ≈L v implies u ≡L v, i.e. the weak
substitutability implies the syntactic congruence.

The sets of contexts of two substrings of words of L
are either disjoint or identical.
In other words:

 If lur, lvr and l'ur' are in L then l'vr' is in L.

ExamplesExamples

Σ* is substitutable.
{an |n>0} is substitutable (all contexts of a substring
have the form (ak,al)).
{wcwR|w in (a,b)*} is substitutable.
{an cbn |n>0} is substitutable.
{w : |w|a = |w|b and |w|c= |w|d} is substitutable.

{an bn |n>0} is not substitutable: for instance, we
have a ≈L aab but not a ≡L aab

{a,aa} is not substitutable (a and aa share the
context (ε,ε) but not the context (ε,a))

Algorithm: main ideasAlgorithm: main ideas

We want to compute the syntactic classes of the language
from the examples, together with their mutual structure.

We are going to use the fact that [u][v] [uv] by creating ⊆
the rules [uv] → [u][v]

Algorithmic trick: the Substitution graph
each distinct substring of the learning sample is a node.

There is an edge between two nodes if they appear in the
same context(s).

Running ExampleRunning Example
LS={c;aca;bcb;abcba;aacaa} (palindrome with a center marked)

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

a b ab abcb …

bc ba aac caa

Running exampleRunning example
LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

a b ab abcb …

bc ba aac caa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

First step: create a non terminal for
each component.

[c] (=[aca]=[abcba]=[bcb]=[aacaa])

[ca] (=[bcba]=[acaa])

[ac] (=[abcb]=[aaca])

But also: [ab], [abcb], [bc], [aac], [ba]…

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Next step: create the rules for the
letters of the alphabet.

[a] → a

[b] → b

 [c] → c

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Third step: create the rules for
each component.

[w] → [u][v] when uv is a
member of the component of w.

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Component (ε,ε):

[c]→[a][bcba], [c]→[ab][cba], c→[abc][ba], [c]→[abcb][a]

[c]→[a][ca], [c]→[ac][a]

[c]→[b][cb], [c]→[bc][b]

[c]→[a][acaa], [c]→[aa][caa], [c]→[aac][aa], [c]→[aaca][a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Component (ε,ε):

[c]→[a] [ca], [c]→[ab] [cba], [c]→[abc] [ba], [c]→[ac] [a]

[c]→[a] [ca], [c]→[ac] [a]

[c]→[b] [cb], [c]→[bc] [b]

[c]→[a] [ca], [c]→[aa] [caa], [c]→[aac] [aa], [c]→[ac] [a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Component (ε,ε):

[c]→[a] [ca], [c]→[ac] [a],

[c]→[ab] [cba], [c]→[abc] [ba], [c]→[b] [cb],

[c]→[bc] [b], [c]→[aa] [caa], [c]→[aac] [aa],

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Component (a,ε): (final result)

[ca] → [c] [a], [ca] → [ac] [aa]

[ca] → [b] [cba], [ca] → [bc] [ba], [ca] → [a] [caa]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Component (ε,a): (final result)

[ac] → [a] [c], [ac] → [aa] [ca]

[ac] → [ab] [cb], [ac] → [abc] [b], [ac] → [aac] [a]

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Components of one string:

[ab] → [a][b], [aac] → [a][ac], [aac] → [aa][c],
[aa] → [a][a] …

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

a b ab abcb …

bc ba aac caa

Running exampleRunning example

LS={c;aca;bcb;abcba;aacaa}

Outputed grammar: G=< {a,b,c}, V, P, [c] >

where P = {[a] → a, [b] → b,

[c] → [a][ca] | [ac][a] | c, [ca] → [c][a], [ac] → [a][c],

[c] → [ab][cba] | [abc][ba] | [b][cb] | [bc][b] | [aa][caa] | [aac][aa]

[ca] → [ac][aa] | [b][cba] | [bc][ba] | [a][caa]

[ac] → [aa][ca] | [ab][cb] | [abc][b] | [aac] [a]

[ab] → [a][b] We can show that this

[aac] → [a][ac] | [aa][c] grammar generates the

[aa] → [a][a] language of palindromes

… } with a center marked.

Learning ResultLearning Result

The algorithm identifies polynomially in the limit
the class of context-free substitutable languages.

The polynomial bounds are on
 Computation: it takes a polynomial time in the size of

the learning sample to run the algorithm.

 Data: for each substitutable language, there exists a
characteristic sample whose cardinality is
polynomial in the size of the target.

Substitutable context-free and 0-Substitutable context-free and 0-
reversible regular languagesreversible regular languages

A regular language is 0-reversible if whenever uw
and vw are in the language then ux is in the
language iff vx is in the language [Angluin, 82].

Substitutable languages are the (context-free) exact
analogue of 0-reversible languages (regular).

Direct ExtensionsDirect Extensions
This work [Clark & Eyraud, 05, 07] generated different
extensions

Identification of k-l substitutable languages [Yoshinaka, 08]

PAC-learning of unambigous NTS languages [Clark, 06], of
subclasses of CFG [Shibata&Yoshinaka, 16]

Local substitutable languages [Coste, Garet & Nicolas, 12]

Substitutable tree languages [Kasprzik & Yoshinaka, 11]

Substitutable graph languages [Eyraud, Janodet, Oates, 12&16]

Identification with the help of an oracle of congruential
context-free laguages [Clark, 10], conjunctive grammars
[Yoshinaka, 15], Parallel Multiple CF grammars [Clark &
Yoshinaka, 14]

Heuristics have preceded theory [Harris, 54], [Brill et al., 90]
[Adriaans, 99], [van Zaanen, 00] [Klein & Manning, 02], ...

Substitutable Languages and Substitutable Languages and
Natural LanguagesNatural Languages

Natural languages are obviously more complex, but
substitutable ones can give nice insights into some
linguistic disputes.

Ex.: Auxiliary fronting in polar questions

Sentences like 'Is the man who is hungry ordering Is the man who is hungry ordering
dinner?dinner?' are unlikely to be present in a child environment.' are unlikely to be present in a child environment.

However, it has been shown that children are quickly able However, it has been shown that children are quickly able
to identify it as correct and reject the wrong sentence 'to identify it as correct and reject the wrong sentence 'Is
the man who hungry is ordering dinner?'

Used as a clue in defence of the theory of innate
knowledge of native language.

A (very) simple exampleA (very) simple example

 S = { the man who is hungry asked a beer.

 the man asked a beer.

 the man is hungry.

 the man is ordering dinner.

 is the man hungry? }

(+) is the man who is hungry ordering dinner?

(-) is the man who hungry is ordering dinner?

Our algorithm can identifies correct structure from incorrect
one without any example on this particular structure in
the sample.

03/30/18 44

Outline

Introduction

Learning Substitutable languages

Prime congruence classes

Extension to tree and graph grammars

A dual approach

Conclusion

Congruencial classesCongruencial classes

Recall: Given a language L, [u] is the congruence class of u,
that is the set of all substrings v such that u ≡Lv

If the language is not regular : an infinite number of
congurence classes

However, substitutable (and others) can be represented by a
finite number of them

Prime congruence classesPrime congruence classes

Two particular congruence classes:

The unit: [ε]

The zero: 0 = {u : for all (l,r), lur is not in L}

A congruence class X is prime if it is non-zero and non-unit
and for any two congruence classes Y, Z such that
X = Y · Z then either Y or Z is the unit.
If a non-zero non-unit congruence class is not prime then
we say it is composite.

Prime congruence classesPrime congruence classes

Example: L={ancbn : n ≥0}

[ε]={ε} and 0=Σ*baΣ*: not prime by definition,

L : prime (because L=[c]=[aca]≠[a][ca]={ancbn : n ≥1})

[a] = {a} and [b] ={b} : both prime

[ai]={ai}=[a][ai-1] with i>1: not prime (same for b)

[aic] = {ai+jcbj : j ≥ 0} and [cbi] = {ajcbj+i : j ≥ 0} : not
prime

Note: L = {ab} has 5 congruence classes: [a], [b], [ab], [ε]
and 0. The first 4 are all singleton sets. [a] and [b] are
prime but [ab] = {ab} = [a][b], and so L is not prime.

LLscsc

L
sc
 : the set of all languages which are substitutable,

non-empty, do not contain ε, and have a finite
number of prime congruence classes.

Example: {ancbn : n ≥0}

Counter-example: L={cibaib : i>0} {c∪ ideid : i>0}

CF and substitutable

But for all i, C
L
(baib) = {(ci, ε)} = C

L
(deid)

Infinite number of classes [baib]=[deid]={baib, deid},
each of which is prime.

Prime decompositionPrime decomposition

A prime decomposition of a congruence class X is a
finite sequence of one or more prime congruence
classes α = <X

1
 , . . . , X

k
> such that X = X

1
X

2
...X

k

Lemma: Every non-zero non-unit congruence class
of a language in L

sc
 has a unique prime factorisation

Correct rulesCorrect rules

Correct production: [] → α where α is a sequence ᾱ
of at least 2 primes and [] is a prime congruence ᾱ
class.
A correct lexical production is one of the form
[a]→a where a Σ, and [a] is prime.∈

Ex: L = {a n cb n | n ≥ 0}. Primes: [a], [c], [b].
The correct lexical productions are the three obvious
ones [a]→a, [b]→b and [c]→c.
The only correct productions have [c] on the left
hand side, and are [c]→[a][c][b], [c]→[a][a][c][b]
[b] and so on.

Too long rulesToo long rules

We say that a sequence of primes α is pleonastic (too
long) if α = γβδ for some γ, β, δ, which are
sequences of primes, such that |γ| + |δ| > 0, [] is a ββ
prime, and |β| > 1

A rule is too long if its right handside is too long. It
is valid otherwise

Canonical grammarCanonical grammar

Lemma: If L L∈
sc
 then there are a finite number of

valid productions

Let L in L
sc.

. Its (unique) canonical grammar G
*
(L):

Non-terminals: the prime congruence classes of L, together
with an additional symbol S (the start symbol).

Productions:
the single production containing the start symbol: S → α(L), where
α(L) be the unique prime decomposition of L.

All valid productions

The production [a]→a, for each terminal symbol a that occurs in the
language

Theorem: the language of G
*
(L) is L

Learning resultLearning result

The previous algorithm can be adapted to output
only canonical grammars: it identifies in the limit
the class L

sc

Moreover, it learns exactly the target grammar
(=language + structure): strong learning

Corrolary: it learns trees from strings!

03/30/18 54

Outline

Introduction

Learning Substitutable languages

Prime congruence classes

Extension to tree and graph grammars

A dual approach

Conclusion

Extension to treeExtension to tree
Instead of strings the data are trees

The grammars are Simple Context Free Tree Grammar

Extension to treeExtension to tree

All we need is the transposition of the notions of
context, subtree and a gluing mechanism.

Distributional learning of tree Distributional learning of tree
languageslanguages

[Kasprzik & Yoshinaka, 11]:

r-substitutable context-free tree languages are efficiently
identifiable in the limit from positive tree examples.

r-SCFTG with p-finite environment are identifiable from
positive presentation using a membership oracle.

The algorithms are simple adaptation to trees of the ones
for the strings.

Extension to graphsExtension to graphs

Again, we need to define what a context is, what a
subgraph is, and how to glu them together.

But we also need to restrict ourselves as general
graphs are too complex:

We need tractable isomorphism (and sub-isomorphisme)

We need a grammar formalism where it is polynomially
doable to test whether a given graph is in the language

Plane graphs are good candidate: polynomial
decidable sub-isomorphism.

Plane GraphPlane Graph
Embeddings of planar graph in the plan:

(a) (b)

Class of isotopy

v1 v
3

v
6

v
2

v
4

v
5

SubstitutabilitySubstitutability

In a substitutable plane graph language, whenever
two plane graphs appear in the same context once,
they share the same set of contexts.

Learning resultLearning result

[Eyraud, Janodet, Oates, 16]: Substitutable plane
graph languages are identifiable in the limit from
examples of the language

Promising research

Languages are close under isomorphism.

First non-trivial class of graph grammars to be learnable

Algorithm is not efficient

Hard to extend to more complex kind of graphs

03/30/18 62

Outline

Introduction

Learning Substitutable languages

Extension to tree and graph grammars

A dual approach

Conclusion

Distributional LearningDistributional Learning

A new familly of approaches to handle grammar
induction:

“Observe, model, exploit the relation between substrings
and contexts”

Primal (ex: substitutable): a non-terminal represent a
(set of) string that appear in the same contexts: if [u]
→* v then CL(u) = CL(v)

Dual: a non-terminal represent a (set of) context and
generates only strings that appear in this context: if
[(l,r)] →* u then u ∈{w : lwr in L} = SL(l,r)

An exampleAn example

L = {anbn : n≥0}

Observation table:

(ε,ε) (a,ε) (ε,b) (a,b)

ε yes no no yes

a no no yes no

b no yes no no

ab yes no no yes

aab no no yes no

abb no yes no no

aabb yes no no yes

An exampleAn example

L = {anbn : n>0}

Observation table:

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1

An exampleAn example

L = {anbn : n>0}

Observation table:

Primal: similar lines (or similar parts of different
lines) may correspond to the same non-terminal

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1

An exampleAn example

L = {anbn : n>0}

Observation table:

Dual: similar columns may correspond to the same
non-terminal

(ε,ε) (a,ε) (ε,b) (a,b)

ε 1 0 0 1

a 0 0 1 0

b 0 1 0 0

ab 1 0 0 1

aab 0 0 1 0

abb 0 1 0 0

aabb 1 0 0 1

An exampleAn example

L = {anbn : n>0} but we only “see” the
sample S={ab, aabb}

Observation table:

Ask an oracle for the missing information

(ε,ε) (a,ε) (ε,b) (a,b)

ε ? ? ? 1

a ? ? 1 ?

b ? 1 ? ?

ab 1 ? ? 1

aab ? ? 1 ?

abb ? 1 ? ?

aabb 1 ? ? ?

An exampleAn example

L = {anbn : n>0} but we only “see” the
sample S={ab, aabb}

Real observation table:

(ε,ε) (a,ε) (ε,b) (a,b) (aa,ε) (aab,ε) (ε,bb) (ε,abb) (aa,b) (a,bb)

ε ++

a ++ ++ ++

b ++ ++ ++

ab ++ ++

aa ++

bb ++

aab ++

abb ++

aabb ++

An exampleAn example

L = {anbn : n>0} but we only “see” the
sample S={ab, aabb}

Real observation table:

(ε,ε) (a,ε) (ε,b) (a,b) (aa,ε) (aab,ε) (ε,bb) (ε,abb) (aa,b) (a,bb)

ε ++

a ++ ++ ++

b ++ ++ ++

ab ++ ++

aa ++

bb ++

aab ++

abb ++

aabb ++

Context set

Kernel

Learning principleLearning principle

Problem: if the language is not regular, there exists a
non-finite number of syntactic congruence classes.

What we need is to restrict ourselves to classes of
languages that are representable by finitely many
congruence classes

Then we may observe these classes in the completed
observable table constructed from a finite sample:

Either by considering similar rows (primal)

Or by considering similar column (dual)

Finite Context Property (dual)Finite Context Property (dual)

A CFG G = < Σ, N, S, P > has the (one) Finite Context
Property iff every A N admits a characterizing ∈
context (l,r) such that SL(l,r)={v: N→* v}

Examples: all regular languages, parenthesis
languages, ...

With enough data, one column of the observation
table corresponds exactly to each non-terminal of the
target grammar.

Adding new columns add new non-terminals (thus new
rules)

Adding new lines remove incorrect rules

Learning in the dualLearning in the dual

Grammar creation:
Non-terminals: [(l,r)], (l,r) in F
Rules: [(l,r)] → a if lar in L
[(l,r)] → [(l1,r1)][(l2,r2)] if for all w1, w2 in K s.t. l1w1r1 and l2w2r2 in L
 we have lw1w2r in L

Learning resultsLearning results

[Clark, 10 ; Yoshinaka, 11] 1-FCP (and 1-FKP) classes
are identifiable in the limit from examples using a
membership query with

An update time polynomial in the size of the sample
An number of queries polynomial in the size of the target
grammar.

Extended to k-FCP (and k-Finite Kernel Property and k-
Finite Distributional Property where each non-terminal
has either a characteristic context or characteristic
string).
Extended to other classes of grammars: multiple CFG
and parallel CFG.
Extended to PAC-learning results

03/30/18 75

Outline

Introduction

Learning Substitutable languages

Extension to tree and graph grammars

A dual approach

Conclusion

Overall results (in 2012...)Overall results (in 2012...)

Graph form.

Clark, Eyraud &
Habrard '08 (CBFG)

Eyraud,
Janodet &
Oates '12

Next stepsNext steps

Restrictions rely on a class of grammars (to make
sure the language is representable by a finite number
of congruence classes).

Use of a membership oracle (for the more complex
classes).

Not practical that way but nice proof of concept.

MISC. citationsMISC. citations
John Myhill, 1950, commenting on Bar-Hillel

I shall call a system regular if the following holds for all
expressions μ,ν and all wffs φ,ψ each of which contains an
occurrence of ν: If the result of writing μ for some occurrence of ν
in φ is a wff, so is the result of writing μ for any occurrence of ν in
ψ. Nearly all formal systems so far constructed are regular; ordinary
word-languages are conspicuously not so.

Noam Chomsky review of Greenberg (1959)

Let us say that two units A and B are substitutable1 if there are
expressions X and Y such that XAY and XBY are sentences of L;
substitutable2 if whenever XAY is a sentence of L then so is XBY
and whenever XBY is a sentence of L so is XAY (i.e. A and B are
completely mutually substitutable). These are the simplest and basic
notions. (footnote 3. They are discussed by R. Carnap in The
Logical Syntax of Language, 1934)

String Rewriting String Rewriting RuleRule

Introduced in 1914 by Alex Thue.

A string rewriting rule replaces a substring of a
string by another substring.

Example: ab → ε
This rule replaces substings ab by ε, i.e. it erases
substrings ab.

aabbab → abab → ab → ε

Running Example

 LS={c;aca;bcb;abcba;aacaa} (palindromes with a center marked)

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

a b ab abcb …

bc ba aac caa

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

a b ab abcb …

bc ba aac caa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Erase component made of
a unique element.

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Reduced the graph:

If u and v are in the same
component and u > v

Then replace every lur by lvr

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca acaa ac

bcb ca aaca

 aacaa

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca ca ac

bcb ca ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c bcba abcb

abcba aca ca ac

bcb ca ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c ca ac

aca aca ca ac

bcb ca ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c ca ac

aca aca ca ac

bcb ca ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

For every pair (u,v) of disctinct
substrings in the same component,
creat a rule u → v (u > v).

Running Example

 LS={c;aca;bcb;abcba;aacaa}

 c ca ac

aca aca ca ac

bcb ca ac

 aca

Empty context (ε,ε)

Context (a,ε)
Context (ε,a)

Outputed SRS:

< {aca → c; bcb → c}, {c} >

Learning in the PrimalLearning in the Primal

Finite Kernel Property (primal)Finite Kernel Property (primal)

A CFG G = < Σ, N, S, P > has the (one) Finite Kernel
Property iff every A N admits a characterizing string ∈
u such that CL(u)={(l,r):∃v, N→* v, lvr L(G)}∈

Examples: all regular languages, parenthesis
languages, ...

With enough data, one line of the observation table
corresponds exactly to each non-terminal of the
target grammar.

Adding new lines add new non-terminals (thus new rules)

Adding new columns remove incorrect rules

