
3

An Introduction to Learning and Search

In this chapter, we introduce machine learning and data mining problems, and
argue that they can be viewed as search problems. Within this view, the goal is
to find those hypotheses in the search space that satisfy a given quality criterion
or minimize a loss function. Several quality criteria and loss functions, such as
consistency (as in concept learning) and frequency (in association rule mining)
are presented, and we investigate desirable properties of these criteria, such as
monotonicity and anti-monotonicity. These properties are defined w.r.t. the
is more general than relation and allow one to prune the search for solutions.
We also outline several algorithms that exploit these properties.

3.1 Representing Hypotheses and Instances

In Chapter 1, we presented several showcase applications of logical and re-
lational learning. We also used these cases to introduce the tasks addressed
by machine learning and data mining in an informal though general way. Re-
call that data mining was viewed as the task of finding all patterns express-
ible within a language of hypotheses satisfying a particular quality criterion.
On the other hand, machine learning was viewed as the problem of finding
that function within a language of hypotheses that minimizes a loss func-
tion. Within this view, machine learning becomes the problem of function
approximation. Inspecting these views reveals that they are fairly close to one
another, and that there are many common issues when looking at symbolic
machine learning and data mining.

One of these issues is concerned with knowledge representation. How
should patterns, functions, hypotheses and data be represented? It will be
useful to distinguish different representation languages for data (instances or
examples) and hypotheses (functions, concepts or patterns). Therefore, we
assume there is

• a language of examples Le, whose elements are descriptions of instances,
observations or data, and

42 3 An Introduction to Learning and Search

• a language of hypotheses Lh, whose elements describe hypotheses (func-
tions or patterns) about the instances, observations or data.

In many situations, it is helpful to employ background knowledge in the min-
ing and learning process. However, for ease of exposition, we postpone the
discussion of background knowledge to Section 4.9.

The goal of data mining and machine learning is then to discover hy-
potheses that provide information about the instances. This implies that the
relationship between the language of examples Le and of hypotheses Lh must
be known. This relationship can be modeled elegantly by viewing hypotheses
h ∈ Lh as functions h : Le → Y to some domain Y. The learning task is then
to approximate an unknown target function f well. This view is illustrated
in Fig. 3.1. Different domains are natural for different learning and mining
tasks. For instance, in regression, the task is to learn a function from Le to
Y = R, that is, to learn a real-valued function. As an illustration, consider
that we want to learn to assign (real-valued) activities to a set of molecules.
On the other hand, when learning definitions of concepts or mining for local
patterns, Y = {0, 1} or, equivalently, Y = {true, false}. In concept learning,
the task could be to learn a description that matches all and only the active
molecules. The resulting description is then the concept description.

Y Le

h1

e

h2(e)

h1(e)
h2

Fig. 3.1. Hypotheses viewed as functions

When the domain of the hypotheses is binary, that is, when Y = {0, 1}, it
is useful to distinguish the instances that are covered by a hypothesis, that is,
mapped to 1, from those that are not. This motivates the following definition:

Definition 3.1. The covers relation c is a relation over Lh×Le, and c(h, e)=
true if and only if h(e) = 1.

Thus the covers relation corresponds to a kind of matching relation. We will
sometimes write c(h) to denote the set of examples in Le covered by the
hypothesis h ∈ Lh. Furthermore, the set of examples from D ⊆ Lh covered

3.2 Boolean Data 43

by a hypothesis h will sometimes be denoted as c(h,D). So, c(h) = co(h,Le).
This relation is graphically illustrated in Figure 3.2.

Le

c(h)

h

Lh

Fig. 3.2. The covers relation

Different notions of coverage as well as choices for Le and Lh can be made.
For logical and relational learning, this will be extensively discussed in the
next chapter. For the present chapter, however, we will focus on using simple
boolean or item-set representations that are so popular in machine learning
and data mining. Because these representations are so simple they are ideal
for introducing machine learning and data mining problems and algorithms.

3.2 Boolean Data

Due to their simplicity, boolean representations are quite popular within com-
putational learning theory and data mining, where they are better known un-
der the name item-sets. In boolean learning, an example is an interpretation
over propositional predicates. Recall that this is an assignment of the truth-
values {true, false} to a set of propositional variables. In the terminology of
boolean logic, Herbrand interpretations are often called variable assignments.

One of the most popular data mining tasks involving boolean data is that
of basket analysis.

Example 3.2. In basket analysis, the aim is to analyze the purchases of clients
in, for instance, a supermarket. There is one propositional variable for each
of the products available in the supermarket. Assume we have the following
set of products I = {sausage, beer,wine,mustard}.

Consider then that the client buys sausage, beer and mustard. This corre-
sponds to the interpretation or item-set {sausage, beer,mustard}. In this case,
the language of examples is

Le = {I|I ⊆ {sausage, beer,mustard,wine}}

44 3 An Introduction to Learning and Search

For boolean data, various types of hypotheses languages have been em-
ployed. Perhaps, the most popular one is that of conjunctive expressions of
the form p1∧ . . .∧pn where the pi are propositional atoms. In the data mining
literature, these expressions are also called item-sets and usually represented
as {p1, · · · , pn}; in the literature on computational learning theory [Kearns
and Vazirani, 1994] they are known as monomials. So, in this case: Lh = Le,
which is sometimes called the single-representation trick. Using clausal logic,
item-sets can be represented by the set of facts {p1 ←, . . . , pn ←}, though
this notation is less convenient because it is too lengthy. It will be convenient
to use the notation LI to denote all item-sets or conjunctive expressions over
I, the set of all items. More formally,

LI = {I|I ⊆ I} (3.1)

Continuing the basket analysis example above, the hypothesis that some-
one buys mustard and beer could be represented using mustard ← and beer ←,
or more compactly as {mustard, beer}. It is easily verified that this hy-
pothesis covers the example {sausage, beer,mustard}. The clause mustard ←
sausage, beer describes an association rule, that is, a particular kind of pattern.
It states than if a client buys beer and sausage she also buys mustard. When
the coverage relation is chosen to coincide with the notion of satisfiability, the
example is covered by the clause.

When using purely logical descriptions, the function represented by a hy-
pothesis is typically boolean. However, for the domain of item-sets it is also
possible to specify real-valued functions. Consider, for instance, the function

h(e) = sausage + 2 × beer + 4 × wine + mustard

that computes the price of the basket e.

3.3 Machine Learning

The fundamental problem studied in machine learning is that of function ap-
proximation. In this setting, it is assumed that there is an unknown target
function f : Le → Y, which maps instances in Le to values in Y. In addition,
a set of examples E of the input-output behavior of f is given. The task is
then to find a hypothesis h ∈ Lh that approximates f well as measured by a
so-called loss function.

Given

• a language of examples Le;
• a language of hypotheses Lh;
• an unknown target function f : Le → Y;
• a set of examples E = {(e1, f(e1)), · · · , (en, f(en))} where each ei ∈ Le;

3.4 Data Mining 45

• a loss function loss(h,E) that measures the quality of hypotheses h ∈ Lh

w.r.t. the data E;

Find the hypothesis h ∈ Lh that minimizes the loss function, that is, for
which

h = arg min loss(h,E) (3.2)

As already indicated, various machine learning tasks can be obtained by
varying Y. In the simplest case of binary classification or concept learning,
Y = {1, 0}, and the task is to learn how to discriminate positive from nega-
tive examples. When working with item-sets, this could be baskets that are
profitable or not. A natural loss function for this task minimizes the empirical
risk :

losser(E, h) =
1
|E|

∑

i

|f(ei) − h(ei)| (3.3)

So, minimizing the empirical risk corresponds to minimizing the number
of errors made on the training data E. Note, however, that minimizing the
empirical risk does not guarantee that the hypothesis will also have a high
accuracy on unseen data. This view on classification can easily be generalized
to take into account more than two classes.

A regression setting is obtained by choosing Y = R. The task is then
to learn to predict real values for the examples. As an example of such a
function, consider learning a function that predicts the profit the shop makes
on a basket. The most popular loss function for regression minimizes the sum
of the squared errors, the so-called least mean squares loss function:

losslms(E, h) =
∑

i

(f(ei) − h(ei))2 (3.4)

Finally, in a probabilistic setting, the function to be approximated can be
replaced by a probability distribution or density. A popular criterion in this
case is to maximize the (log) likelihood of the data; cf. Chapter 8.

This view of machine learning as function approximation will be useful
especially in later chapters, such as Chapter 8 on probabilistic logic learning
and Chapter 9 on distance and kernel-based learning.

3.4 Data Mining

The purpose of most common data mining tasks is to find hypotheses (express-
ible within Lh) that satisfy a given quality criterion Q. The quality criterion
Q is then typically expressed in terms of the coverage relation c and the data
set D. This can be formalized in the following definition:

46 3 An Introduction to Learning and Search

Given

• a language of examples Le;
• a language of hypotheses (or patterns) Lh;
• a data set D ⊆ Le; and
• a quality criterion Q(h,D) that specifies whether the hypothesis h ∈ Lh

is acceptable w.r.t. the data set D;

Find the set of hypotheses

Th(Q,D,Lh) = {h ∈ Lh | Q(h,D) is true} (3.5)

When the context is clear, we will often abbreviate Th(Q,D,Lh) as Th.
This definition has various special cases and variants. First, the data mining
task can be to find all elements, k elements or just one element that satisfies
the quality criterion Q. Second, a large variety of different quality criteria are
in use. These can be distinguished on the basis of their global, local or heuristic
nature. Local quality criteria are predicates whose truth-value is a function of
the hypothesis h, the covers relation c and the data set D only. On the other
hand, a global quality criterion is not only a function of the hypothesis h, the
covers relation c and the data set D, but also of the other hypotheses in Lh.

One function that is commonly used in data mining is that of frequency.
The frequency freq(h,D) of a hypothesis h w.r.t. a data set D is the cardi-
nality of the set c(h,D):

freq(h,D) =| c(h,D) | (3.6)

In this definition, the absolute frequency is expressed in absolute terms, that
is, the frequency is a natural number. Sometimes, frequency is also expressed
relatively to the size of the data set D. Thus the relative frequency is

rfreq(h,D) =
freq(h,D)

| D | (3.7)

An example of a local quality criterion is now a minimum frequency con-
straint. Such a constraint states that the frequency of a hypothesis h on
the data set D should exceed a threshold, that is, Q(h,D) is of the form
freq(h,D) > x where x is a natural number or rfreq(h,D) > y where y is a
real number between 0 and 1. These criteria are local because one can verify
whether they hold by accessing the hypothesis h and D only. There is no need
to know the frequency of the other hypotheses in Lh.

An example of a global quality criterion is to require that the accuracy of
a hypothesis h w.r.t. a set of positive P and negative example N is maximal.
The accuracy acc(h, P,N) is then defined as

acc(h, P,N) =
freq(h, P)

freq(h, P) + freq(h,N)
. (3.8)

The maximal accuracy constraint now states

3.5 A Generate-and-Test Algorithm 47

Q(h, P,N) =
(
h = arg max

h∈Lh

acc(h, P,N)
)

(3.9)

This constraint closely corresponds to minimizing the empirical loss in a func-
tion approximation setting.

Because the machine learning and data mining views are quite close to
one another, at least when working with symbolic representations, we shall
in the present chapter largely employ the data mining perspective. When
shifting our attention to take into account more numerical issues, in Chapter
8 on probabilistic logic learning and Chapter 9 on distance and kernel-based
learning, the machine learning perspective will be more natural. The reader
must keep in mind though, that in most cases the same principles apply and
are, to some extent, a matter of background or perspective.

3.5 A Generate-and-Test Algorithm

Depending on the type and nature of the quality criterion considered, different
algorithms can be employed to compute Th(Q,D,Lh). For a given quality
criterion and hypotheses space, one can view mining or learning as a search
process. By exploiting this view, a (trivial) algorithm based on the well-known
generate-and-test technique in artificial intelligence can be derived. This so-
called enumeration algorithm is shown in Algo. 3.1.

Algorithm 3.1 The enumeration algorithm
for all h ∈ Lh do

if Q(h, D) = true then
output h

end if
end for

Although the algorithm is naive, it has some interesting properties: when-
ever a solution exists, the enumeration algorithm will find it. The algorithm
can only be applied if the hypotheses language Lh is enumerable, which means
that it must be possible to generate all its elements. As the algorithm searches
the whole space, it is inefficient. This is a well-known property of generate-
and-test approaches. Therefore, it is advantageous to structure the search
space in machine learning, which will allow for its pruning. Before discussing
how the search space can be structured, let us illustrate the enumeration al-
gorithm. This illustration, as well as most other illustrations and examples in
this chapter, employs the representations of boolean logic.

Example 3.3. Reconsider the problem of basket analysis sketched in Ex. 3.2. In
basket analysis, there is a set of propositional variables (usually called items)

48 3 An Introduction to Learning and Search

I = {s = sausage, m = mustard, b = beer, c = cheese}. Furthermore, every ex-
ample is an interpretation (or item-set) and the hypotheses are, as argued in
Ex. 3.2, members of LI . Consider also the data set

D = {{s,m, b, c}, {s,m, b}, {s,m, c}, {s,m}}
and the quality criterion Q(h,D) = (freq(h,D) � 3). One way of enumerating
all item-sets in LI for our example is given in Fig. 3.3. Furthermore, the item-
sets satisfying the constraint are underlined.

{c, b}

{c} {b}

{s, c} {s, b} {m, c} {m, b}

{s, c, b}{s, m, b}{s, m, c}

{s, m, c, b}

{}

{m}{s}

{s, m}

Fig. 3.3. Enumerating and testing monomials or item-sets

3.6 Structuring the Search Space

One natural way to structure the search space is to employ the generality
relation.

Definition 3.4. Let h1, h2 ∈ Lh. Hypothesis h1 is more general than hypoth-
esis h2, notation h1 � h2, if and only if all examples covered by h2 are also
covered by h1, that is, c(h2) ⊆ c(h1).

We also say that h2 is a specialization of h1, h1 is a generalization of h1 or h2

is more general than h1.1 This notion is illustrated in Fig. 3.4. Furthermore,
1 It would be more precise to state that h2 is at least as general than h1. Never-

theless, we shall use the standard terminology, and say that h1 is more general
than h2.

3.6 Structuring the Search Space 49

when h1 � h2 but h1 covers examples not covered by h2 we say that h1 is a
proper generalization of h2, and we write h1 ≺ h2.

c(g)

Lh

g

s

Le

c(s)

Fig. 3.4. Hypothesis g is more general than hypothesis s

Notice that the generality relation is transitive and reflexive. Hence, it is
a quasi-order. Unfortunately, it is not always anti-symmetric since there may
exist several hypotheses that cover exactly the same set of examples. Such
hypotheses are called syntactic variants. Syntactic variants are undesirable
because they introduce redundancies in the search space. In theory, one can
obtain a partial order by introducing equivalence classes and working with a
canonical form as a representative of the equivalence class. In practice, this is
not always easy, as will be explained in the next chapter.

Example 3.5. Consider the task of basket analysis used in Ex. 3.3. The con-
junction sausage ∧ beer is more general than sausage ∧ beer ∧ cheese, or when
using set notation {sausage, beer} is more general than {sausage, beer, cheese}
because the former is a subset of the latter.

Furthermore, if we would possess background knowledge in the form of a
taxonomy stating, for instance, that alcohol ← beer; food ← cheese ; food ←
sausage; and food ← mustard, then the conjunction food ∧ beer together with
the background theory would be more general than sausage ∧ beer. Using the
taxonomy, specific baskets such as {sausage, beer} can be completed under the
background theory, by computing the least Herbrand model of the item-set
and the background theory, yielding in our example {sausage, beer, food, alcohol}.
This is the learning from interpretations setting, that we shall discuss exten-
sively in the next chapter. Whenever an example contains sausage in this
setting the resulting completed example will contain food as well.

Continuing the illustration, if we assume that the examples only contain
the items from I and are then completed using the clauses listed above, then
the conjunctions alcohol ∧ cheese and beer ∧ cheese are syntactic variants, be-
cause there is only one type of item belonging to the category alcohol.

50 3 An Introduction to Learning and Search

When the language Lh does not possess syntactic variants, which will be
assumed throughout the rest of this chapter, the generality relation imposes
a partial order on the search space and can be graphically depicted using a
so called Hasse diagram. This is illustrated in Fig. 3.5.

{m, b}{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

Fig. 3.5. The partial order over the item-sets

It is often convenient to work with a special notation for the maximally
general top element � and the maximally specific bottom element ⊥ such that
c(�) = Le and c(⊥) = ∅. Furthermore, when the elements � and ⊥ do not
exist in Lh they are often added to the language. For item-sets, � = ∅ and
⊥ = I.

3.7 Monotonicity

The generality relation imposes a useful structure on the search space provided
that the quality criterion involves monotonicity or anti-monotonicity.

A quality criterion Q is monotonic if and only if

∀s, g ∈ Lh,∀ D ⊆ Le : (g � s) ∧Q(g,D) → Q(s,D) (3.10)

3.7 Monotonicity 51

It is anti-monotonic2 if and only if

∀s, g ∈ Lh,∀ D ⊆ Le : (g � s) ∧Q(s,D) → Q(g,D) (3.11)

To illustrate this definition, observe that a minimum frequency constraint
freq(h,D) � x is anti-monotonic and a maximum frequency constraint
freq(h,D) � x is monotonic. Similarly, the criterion that requires that a
given example be covered (that is, e ∈ c(h)) is anti-monotonic and the one
that requires that a given example is not covered (that is, e �∈ c(h)) is mono-
tonic. On the other hand, the criterion acc(h, P,N) � x is neither monotonic
nor anti-monotonic.

Exercise 3.6. Let A1(h,D) and A2(h,D) be two anti-monotonic criteria, and
M1(h,D) and M2(h,D) be two monotonic ones. Are the criteria ¬A1(h,D);
A1(h,D)∨A2(h,D); A1(h,D)∧A2(h,D); their duals ¬M1(h,D); M1(h,D)∨
M2(h,D); M1(h,D) ∧ M2(h,D); and the combinations A1(h,D) ∧ M1(h,D)
and A1(h,D) ∨ M1(h,D) monotonic and/or anti-monotonic? Argue why.

Exercise 3.7. Show that the criterion acc(h, P,N) � x is neither monotonic
nor anti-monotonic.

Exercise 3.8. * Consider the primitives free(m) for item-sets, which is true
if and only if none of the subsets of m have the same frequency as m, and
closed(m), which is true if and only if none of the super-sets of m have the
same frequency as m. Do freeness and closedness satisfy the anti-monotonicity
or monotonicity property? Argue why.

When the quality criterion is monotonic or anti-monotonic it is a good idea
to employ the generality relation on the search space and to use specialization
or generalization as the basic operations to move through the search space.
The reason for this is given by the following two properties, which allow us to
prune the search.

Property 3.9. (Prune generalizations) If a hypothesis h does not satisfy a
monotonic quality criterion then none of its generalizations will.

Property 3.10. (Prune specializations) If a hypothesis h does not satisfy an
anti-monotonic quality criterion then none of its specializations will.

These properties directly follow from the definitions of monotonicity and anti-
monotonicity in Eqs. 3.10 and 3.11.

Example 3.11. Reconsider Ex. 3.3 and the anti-monotonic minimum frequency
criterion. Because sausage ∧ beer does not satisfy the minimum frequency con-
straint, none of its specializations do. They can therefore be pruned away, as
illustrated in Fig. 3.7.

2 In the literature, the definitions of the concepts of monotonicity and anti-
monotonicity are sometimes reversed.

52 3 An Introduction to Learning and Search

{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

Fig. 3.6. Pruning specializations

{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

Fig. 3.7. Pruning generalizations

3.8 Borders 53

Example 3.12. Reconsider Ex. 3.3 and the monotonic constraint that requires
that the example {m, b, c} not be covered. Because mustard ∧ beer ∧ cheese
covers this example, all its generalizations can be pruned away as illustrated
in Fig. 3.7.

3.8 Borders

When monotonic and/or anti-monotonic criteria are used, the solution space
has so-called borders. Before introducing borders, let us introduce the max(T)
and min(T) primitives:

max(T) = {h ∈ T | ¬∃t ∈ T : h ≺ t} (3.12)

min(T) = {h ∈ T | ¬∃t ∈ T : t ≺ h} (3.13)

Intuitively, the maximal elements are the most specific ones. These are also
the largest ones when interpreting the symbol ≺ as smaller than or equal to.
Furthermore, more specific hypotheses are typically also longer.

Example 3.13. Let T = {true, s, m, s ∧ m}. Then max(T) = {s ∧ m} and
min(T) = {true}.

Observe that when the hypothesis space Lh is finite, max(T) and min(T)
always exist. When Lh is infinite, this need not be the case. We illustrate this
using string patterns.

Example 3.14. * Many data sets can be conveniently represented using strings
over some alphabet Σ; cf. also Chapter 4. An alphabet Σ is a finite set of
symbols. A string s1s2...sn is then a sequence of symbols si ∈ Σ. For instance,
the string over the alphabet Σ = {a, c, g, t}

atgcccaagctgaatagcgtagaggggttttcatcatttgaggacgatgtataa

might represent a sequence of DNA. When working with strings to represent
patterns and examples, a natural coverage relation is provided by the notion
of substring. A string S = s1s2...sn is a substring of a string T = t1t2...tk,
if and only if s1...sn occur at consecutive positions in t1...tk, that is, there
exists a j for which s1 = tj , s2 = tj+1, ..., and sn = tj+n. For instance, the
string atgc is a substring of aatgccccc with j = 2. For the language of all
strings over the alphabet Σ, that is, Σ∗, max(Σ∗) does not exist. To avoid
such complications in this chapter, we assume that Lh is finite.

For finite languages and monotonic and anti-monotonic quality criteria Q,
the solution space Th(Q,D,Lh) has boundary sets that are sometimes called
borders. More formally, the S-border of maximally specific solutions w.r.t. a
constraint Q is

54 3 An Introduction to Learning and Search

S
(
Th(Q,D,Lh)

)
= max

(
Th(Q,D,Lh)

)
(3.14)

Dually, the G-border of maximally general solutions is

G
(
Th(Q,D,Lh)

)
= min

(
Th(Q,D,Lh)

)
(3.15)

Example 3.15. Reconsider Ex. 3.13. The set T is the set of solutions to the
mining problem of Ex. 3.3, that is, T = Th((freq(h,D) � 3),D,Lm); S(T) =
max(T) = {s ∧ m} and G(T) = min(T) = {true}.

The S and G sets are called borders because of the following properties.

Property 3.16. If Q is an anti-monotonic predicate, then

Th(Q,D,Lh) = {h ∈ Lh | ∃s ∈ S
(
Th(Q,D,Lh)

)
: h � s}

Property 3.17. If Q is a monotonic predicate, then

Th(Q,D,Lh) = {h ∈ Lh | ∃g ∈ G
(
Th(Q,D,Lh)

)
: g � h}

Thus the borders of a monotonic or an anti-monotonic predicate com-
pletely characterize the set of all solutions. At this point the reader may want
to verify that the S set in the previous example fully characterizes the set
T of solutions to an anti-monotonic query as it contains all monomials more
general than the element s ∧ m of S(T).

Furthermore, when Q is the conjunction of a monotonic and an anti-
monotonic predicate M∧A (and the language Lh is finite), then the resulting
solution set is a version space. A set T is a version space if and only if

T = {h ∈ Lh | ∃s ∈ S(T), g ∈ G(T) : g � h � s} (3.16)

For version spaces, the S and G set together form a condensed representation
for the version space. Indeed, in many (but not all) cases the border sets
will be smaller than the original solution set, while characterizing the same
information (as it is possible to recompute the solution set from the border
sets).

Example 3.18. Consider the constraint Q = (freq(h,D) � 2)∧ (freq(h,D) �
3) with D defined as in Ex. 3.3:

D = {{s,m, b, c}, {s,m, b}, {s,m, c}, {s,m}}

Then S(Th) ={s ∧ m ∧ c, s ∧ m ∧ b}, and G(Th) = {b, c} as shown in Fig. 3.8.

Exercise 3.19. Give an example of a quality criterion Q of the form M∨A,
with M a monotonic predicate and A an anti-monotonic one, a data set D
and a language Lh, such that Th(Q,D,Lh) is not a version space.

3.8 Borders 55

G

{s, m}

{s, m, c, b}

{m, c, b}{s, c, b}{s, m, b}{s, m, c}

{s, c} {s, b} {m, c} {c, b}

{b}{c}{m}{s}

{}

{m, b}

S

Fig. 3.8. A version space

In concept learning, one is given sets of positive and negative examples P and
N . The goal of learning (in an idealized situation where no noise arises), is
then to find those hypotheses h that cover all positive and none of the negative
examples. Thus concept learning tasks employ the constraint

(rfreq(h, P) � 100%) ∧ (rfreq(h,N) � 0%) (3.17)

This is the conjunction of an anti-monotonic and a monotonic predicate. Thus,
the solution set to an idealized concept learning task is a version space (ac-
cording to Eq. 3.16).

Exercise 3.20. Find the S and G sets corresponding to the criterion of Eq.
3.17 when P = {{s,m, b}, {s, c, b}} and N = {{b}, {b, c}}.

The S and G sets w.r.t. a version space Th are the so-called positive borders
because they contain elements that belong to Th. In data mining, one some-
times also works with the negative borders. The negative borders contain the
elements that lie just outside Th. The negative borders S− and G− can be
defined as follows:

S−(Th) = min
(
Lh − {h ∈ Lh | ∃s ∈ S(Th) : h � s}

)
(3.18)

G−(Th) = max(Lh − {h ∈ Lh | ∃g ∈ G(Th) : g � h}) (3.19)

Example 3.21. Reconsider the version space Th of Ex. 3.18. For this version
space, S−(Th) = {c ∧ b} and G−(Th) = {s ∧ m}.

56 3 An Introduction to Learning and Search

Finally, note that the size of the border sets can grow very large. Indeed,
for certain hypothesis languages (such as item-sets), the size of the G set can
grow exponentially large in the number of negative examples for a concept-
learning task. Nevertheless, it should be clear that the size of any positive
border set can never be larger than that of the overall solution set.

3.9 Refinement Operators

In the previous two sections, it was argued that the generality relation is
useful when working with monotonic and/or anti-monotonic quality criteria.
The present section introduces refinement operators for traversing the search
space Lh. The large majority of operators employed in data mining or ma-
chine learning algorithms are generalization or specialization operators. They
generate a set of specializations (or generalizations) of a given hypothesis.
More formally,

A generalization operator ρg : Lh → 2Lh is a function such that

∀h ∈ Lh : ρg(h) ⊆ {c ∈ Lh | c � h} (3.20)

Dually, a specialization operator ρs : Lh → 2Lh is a function such that

∀h ∈ Lh : ρs(h) ⊆ {c ∈ Lh | h � c} (3.21)

Sometimes, the operators will be applied repeatedly. This motivates the in-
troduction of the level n refinement operator ρn:

ρn(h) =

⎧
⎨

⎩

ρ(h) if n = 1,⋃

h′∈ρn−1(h)

ρ(h′) if n > 1 (3.22)

Furthermore, ρ∗(h) denotes ρ∞(h).
Many different types of generalization and specialization operators exist

and they are useful in different types of algorithms. Two classes of operators
are especially important. They are the so-called ideal and optimal operators,
which are defined below for specialization operators (the corresponding def-
initions can easily be obtained for generalization operators). ρ is an ideal
operator for Lh if and only if

∀h ∈ Lh : ρ(h) = min({h′ ∈ Lh | h ≺ h′}) (3.23)

So, an ideal specialization operator returns all children for a node in the Hasse
diagram. Furthermore, these children are proper refinements, that is, they are
not a syntactic variant of the original hypothesis. Ideal operators are used in
heuristic search algorithms.

ρ is an optimal operator for Lh if and only if for all h ∈ Lh there exists
exactly one sequence of hypotheses � = h0, h1, ..., hn = h ∈ Lh such that

3.9 Refinement Operators 57

hi ∈ ρ(hi−1) for all i. Optimal refinement operators are used in complete
search algorithms. They have the property that, when starting from �, no
hypothesis will be generated more than once.

An operator for which there exists at least one sequence from � to any
h ∈ Lh is called complete, and one for which there exists at most one such
sequence is nonredundant.

Example 3.22. We define two specialization operators ρo and ρi for the item-
sets over I = {s, m, b, c} using the lexicographic � order over I
s � m � c � b:

ρi(M) = M ∪ {j} with j ∈ (I − M) (3.24)
ρo(M) = M ∪ {j} with ∀l ∈ M : l � j (3.25)

By repeatedly applying ρi to �, one obtains the Hasse diagram in Fig. 3.5,
where an edge between two nodes means that the child node is one of the
refinements according to ρi of the parent node. On the other hand, when
applying ρo to �, one obtains the tree structure depicted in Fig. 3.3. Both
ρ∗o and ρ∗i generate all hypotheses in Lh from �, but there is only a single
path from � to any particular hypothesis using ρo. Remark also that using ρo

amounts to working with a canonical form, where m1∧ ...∧mk is in canonical
form if and only if m1 << ... << mk. Repeatedly applying ρo on � only
yields hypotheses in canonical form.

Two other operations that are useful in learning and mining algorithms
are the minimally general generalization mgg and the maximally general spe-
cialization mgs:

mgg(h1, h2) = min{h ∈ Lh | h � h1 ∧ h � h2} (3.26)
mgs(h1, h2) = max{h ∈ Lh | h1 � h ∧ h2 � h} (3.27)

If the mgg (or mgs) operator always returns a unique generalization (or
specialization), the operator is called the least general generalization lgg or
least upper bound lub (or the greatest lower bound glb). If the lgg and glb
exist for any two hypotheses h1, h2 ∈ Lh, the partially ordered set (Lh,�) is
called a lattice. For instance, the language of item-sets LI is a lattice, as the
following example shows.

Example 3.23. Continuing the previous example, the operators compute

mgg(M1,M2) = M1 ∩ M2 (3.28)
mgs(M1,M2) = M1 ∪ M2 (3.29)

For instance, mgg(s ∧ m ∧ b, s ∧ b ∧ c) = lgg(s ∧ m ∧ b, s ∧ b ∧ c) = {s ∧ b}.
The mgg and lgg operations are used by specific-to-general algorithms. They
repeatedly generalize the current hypothesis with examples. The dual opera-
tions, the mgs and the glb, are sometimes used in algorithms that work from
general-to-specific.

58 3 An Introduction to Learning and Search

Exercise 3.24. Define an ideal and an optimal generalization operator for
item-sets.

Exercise 3.25. * Define an ideal and an optimal specialization operator for
the hypothesis language of strings Σ∗, where g � s if and only if g is a
substring of s; cf. Ex. 3.14. Discuss also the operations mgg and mgs.

3.10 A Generic Algorithm for Mining and Learning

Now everything is in place to adapt the enumeration algorithm of Algo. 3.1
to employ the refinement operators just introduced. The resulting algorithm
is shown in Algo. 3.10. It is a straightforward application of general search
principles using the notions of generality.

Algorithm 3.2 A generic algorithm
Queue := Init ;
Th := ∅;
while not Stop do

Delete h from Queue
if Q(h,D) = true then

add h to Th
Queue := Queue ∪ρ(h)

end if
Queue := Prune(Queue)

end while
return Th

The algorithm employs a Queue of candidate hypotheses and a set Th of
solutions. It proceeds by repeatedly deleting a hypothesis h from Queue and
verifying whether it satisfies the quality criterion Q. If it does, h is added to
Th; otherwise, all refinements ρ(h) of h are added to the Queue. This process
continues until the Stop criterion is satisfied. Observe that there are many
generic parameters (shown in italics) in this algorithm. Depending on the
particular choice of parameter, the algorithm behaves differently. The Init
function determines the starting point of the search algorithm. The initializa-
tion may yield one or more initial hypotheses. Most algorithms start either at
� and only specialize (the so-called general-to-specific systems), or at ⊥ and
only generalize (the specific-to-general systems). The function Delete deter-
mines the actual search strategy: when Delete is first-in-first-out, one obtains
a breadth-first algorithm, when it is last-in-first-out, one obtains a depth-
first algorithm, and when it deletes the best hypothesis (according to some
criterion or heuristic), one obtains a best-first algorithm. The operator ρ de-
termines the size and nature of the refinement steps taken through the search
space. The function Stop determines when the algorithm halts. As argued at

3.11 A Complete General-to-Specific Algorithm 59

the start of this chapter, some algorithms compute all elements, k elements or
an approximation of an element satisfying Q. If all elements are desired, Stop
equals Queue=∅; when k elements are sought, it is | Th |= k. Finally, some
algorithms Prune candidate hypotheses from the Queue. Two basic types of
pruning exist: heuristic pruning, which prunes away those parts of the search
space that appear to be uninteresting, and sound pruning, which prunes away
those parts of the search space that cannot contain solutions.

As with other search algorithms in artificial intelligence, one can distin-
guish complete algorithms from heuristic ones. Complete algorithms compute
all elements of Th(Q,D,Lh) in a systematic manner. On the other hand,
heuristic algorithms aim at computing one or a few hypotheses that score
best w.r.t. a given heuristic function. This type of algorithm does not guar-
antee that the best hypotheses are found.

In the next few subsections, we present a number of instantiations of our
generic algorithm. This includes: a complete general-to-specific algorithm in
Sect. 3.11, a heuristic general-to-specific algorithm in Sect. 3.12, a branch-
and-bound algorithm for finding the top k hypotheses in Sect. 3.13, and a
specific-to-general algorithm in Sect. 3.14. Afterward, a further (advanced)
section on working with borders is included, before concluding this chapter.

3.11 A Complete General-to-Specific Algorithm

We now outline a basic one-directional complete algorithm that proceeds from
general to specific. It discovers all hypotheses that satisfy an anti-monotonic
quality criterion Q. It can be considered an instantiation of the generic algo-
rithm, where

• Init= {�};
• Prune(Queue)= {h ∈ Queue | Q(h,D) = false},
• Stop=(Queue= ∅), and
• ρ is an optimal refinement operator.

Furthermore, various instantiations of Delete are possible.

Example 3.26. Reconsider Ex. 3.3 and assume Algo. 3.3 employs a breadth-
first search strategy (obtained by setting Delete to first-in-first-out). Then the
algorithm traverses the search tree shown in Fig. 3.9 in the order indicated.

Observe that for anti-monotonic quality criteria, Algo. 3.3 only prunes
hypotheses that cannot be a solution, and whose children cannot be a solution
either. Observe also that the use of an optimal refinement operator is, strictly
speaking, not necessary for the correctness of the algorithm but is essential
for its efficiency. Indeed, if an ideal operator would be employed instead, the
same hypotheses would be generated over and over again.

There exists also a dual algorithm, that searches from specific to general
and applies generalization rather than specialization.

60 3 An Introduction to Learning and Search

Algorithm 3.3 A complete general-to-specific algorithm
Queue := {
};
Th := ∅;
while not Queue = ∅ do

Delete h from Queue
if Q(h,D) = true then

add h to Th
Queue := Queue ∪ρo(h)

end if
end while
return Th

3:{m} 4:{c} 5:{b}

7:{s, c} 8:{s, b}

12:{s, m, b}11:{s, m, c}

9:{m, c} 10:{m, b}6:{s, m}

1:{}

2:{s}

Fig. 3.9. Illustrating complete search w.r.t. an anti-monotonic predicate

Exercise 3.27. Describe the dual algorithm and illustrate it at work on
the same data set and hypothesis language, but now use the constraint
(freq(h,D) � 2).

3.12 A Heuristic General-to-Specific Algorithm

The complete algorithm works well provided that the quality criterion is anti-
monotonic or monotonic. However, there exist many interesting mining and
learning tasks for which the quality criterion is neither monotonic nor anti-
monotonic. Furthermore, one might not be interested in all solutions but per-
haps in a single best solution or an approximation thereof. In such cases, it
is too inefficient to perform a complete search because the pruning properties
no longer hold. Therefore, the only resort is to employ a heuristic function f
in a greedy algorithm. Such an algorithm is shown in Algo. 3.4.

The algorithm again works from general to specific and keeps track of a
Queue of candidate solutions. It repeatedly selects the best hypothesis h from

3.12 A Heuristic General-to-Specific Algorithm 61

Queue (according to its heuristic) and tests whether it satisfies Q. If it does,
the algorithm terminates and outputs its solution; otherwise, it continues by
adding all refinements (using an ideal operator) to the Queue. The Queue is
typically also Pruned.

Again, the algorithm can be viewed as an instantiation of Algo. 3.10. The
following choices have been made:

• Delete selects the best hypothesis,
• Stop=| Th |= 1,
• an ideal refinement operator is employed,
• Prune depends on the particular instantiation. Very often Prune retains

only the best k hypotheses, realizing a beam search.

Note that – because of the use of a heuristic and a greedy search strategy
– it is essential that an ideal operator is being used. Greedy algorithms focus
on the currently most interesting nodes and prune away the others. Should
an optimal refinement operator be used instead of an ideal one, the direct
neighborhoods of the nodes of interest would not be fully explored.

Algorithm 3.4 A heuristic general-to-specific algorithm
Queue := {
};
Th := ∅;
while Th = ∅ do

Delete the best h from Queue
if Q(h,D) = true then

add h to Th
else

Queue := Queue ∪ρi(h)
end if
Queue := Prune(Queue)

end while
return Th

Example 3.28. Let P = {{s, m, b}, {s, b, c}} and N = {{s, m}, {b, c}} be
the data sets; assume that the heuristic function used is m(h, P,N) and that
the quality criterion is true if m(h, P,N) > m(h′, P,N) for all h′ ∈ ρi(h). The
m(h, P,N) function is a variant of the accuracy defined in Eq. 3.8:

m(h, P,N) =
freq(h, P) + 0.5

freq(h, P) + freq(h,N) + 1
(3.30)

The m function is used instead of acc to ensure that when two patterns have
equal accuracy, the one with the higher coverage is preferred. Assume also
that a beam search with k = 1, that is, hill climbing, is used. This results in
the search tree illustrated in Fig. 3.12. The nodes are expanded in the order
indicated.

62 3 An Introduction to Learning and Search

5:{b}(0.625)

9:{s, m, b}(0.75) 10:{s, c, b}(0.75)

2:{s} (0.625) 4:{c}(0.5)3:{m}(0.5)

8:{s, b}(0.83)
7:{s, c}(0.5)

6:{s, m}(0.5)

1:{}(0.5)

Fig. 3.10. Illustrating heuristic search

3.13 A Branch-and-Bound Algorithm

For some types of problem, a combination of the previous two algorithms
– branch-and-bound – can be used. A branch-and-bound algorithm aims at
finding the best hypothesis (or, best k hypotheses) w.r.t. a given function f ,
that is,

Q(h,D,Lh) =
(
h = arg max

h′∈Lh

f(h′)
)

(3.31)

Furthermore, branch-and-bound algorithms assume that, when working from
general to specific, there is a bound b(h) such that

∀h′ ∈ Lh : h � h′ → b(h) � f(h′) (3.32)

Given the current best value (or current k best values) v of the hypotheses
investigated so far, one can safely prune all refinements of h provided that
v � b(h).

The branch-and-bound algorithm essentially combines the previous two
algorithms: it performs a complete search but selects the hypotheses greedily
(according to their f values) and prunes on the basis of the bounds. Further-
more, it computes a single best hypothesis (or k best hypotheses) as in the
heuristic algorithm.

Example 3.29. Consider the function f(h) = freq(h, P) − freq(h,N). The
quality criterion aims at finding patterns for which the difference between
the frequency in P and in N is maximal. For this function f(h), the bound

3.14 A Specific-to-General Algorithm 63

b(h) = freq(h, P) satisfies the requirement in Eq. 3.32 because specializing a
hypothesis can only decrease the frequencies freq(h, P) and freq(h,N). Thus
the maximum is obtained when freq(h, P) remains unchanged and freq(h,N)
becomes 0.

The resulting search tree, applied to P and N of Ex. 3.20, is shown in
Fig. 3.13. The values for the hypotheses (b(h); f(h)) are shown for each node.
The order in which the nodes are visited is indicated. Nodes 3, 4 and 6 are
pruned directly after generation and node 7 is pruned after node 8 has been
generated. Finally, since node 5 cannot be further expanded, node 8 contains
the optimal solution.

Let us also stress that branch-and-bound algorithms are used with statis-
tical functions such as entropy and chi-square; cf. [Morishita and Sese, 2000].

8:{s, b}(2;2)

1:{}(2;0)

2:{s} (2;1) 3:{m}(1;0) 4:{c}(1;0) 5:{b}(2;1)

6:{s, m}(1;0)
7:{s, c}(1;1)

Fig. 3.11. Illustrating a branch-and-bound algorithm

Exercise 3.30. Specify the branch-and-bound algorithm formally.

3.14 A Specific-to-General Algorithm

To illustrate a specific-to-general algorithm, we consider an algorithm that
implements a cautious approach to generalization in this section. Assume
that the goal is to find the minimal generalizations of a set of hypotheses (or
positive examples). The quality criterion can be specified as

Q(h,D) =
(
h ∈ max({h ∈ Lh | ∀d ∈ D : h � d}

)
(3.33)

One possible algorithm to compute Th(Q,D,Lh) is shown in Algo. 3.5. It
starts from ⊥ and repeatedly generalizes the present hypotheses until all ex-
amples or hypotheses in D are covered. Observe that the algorithm is an

64 3 An Introduction to Learning and Search

instance of the generic algorithm Algo. 3.10 (it is left as an exercise to the
reader to verify this), and also that the efficiency of the algorithm can be
improved by, for instance, incrementally processing the examples in D. This
would eliminate our having to test the overall criterion Q over and over again.

Algorithm 3.5 A cautious specific-to-general algorithm
Queue := {⊥};
Th := ∅;
while Queue �= ∅ do

Delete a hypothesis h from Queue
if Q(h,D) = true then

add h to Th
else

select a hypothesis d ∈ D such that ¬(h � d)
Queue := Queue ∪ mgg(h, d)

end if
end while
return Th

Example 3.31. Consider the data set D = { s ∧ m ∧ c, s ∧ m ∧ b, s ∧ m ∧ c ∧ b}.
When the examples are processed from right to left, the following hypotheses
are generated: ⊥ = false, s ∧ m ∧ c ∧ b, s ∧ m ∧ b, and s ∧ m.

Exercise 3.32. Design a data set in the domain of the strings where the S
set (returned by Algo. 3.5) is not a singleton.

3.15 Working with Borders*

Algo. 3.5 can also be regarded as computing the S set w.r.t. the anti-monotonic
constraint rfreq(h,D) � 1, which raises the question of how to compute,
exploit and reason with border sets. This will be addressed in the present
section.

3.15.1 Computing a Single Border

First, observe that a single border (either the S or G set w.r.t. an anti-
monotonic or a monotonic constraint) can be computed in two dual ways:
general-to-specific or specific-to-general using a simple adaptation of Algo.
3.3. To illustrate this point, assume that the goal is to find the G set w.r.t. a
monotonic criterion Q and that we work from general to specific. Two modi-
fications are needed to Algo. 3.3 for addressing this task (shown in Algo. 3.6):
1) refine only those hypotheses that do not satisfy the quality criterion Q,
and 2) move only those elements to Th that effectively belong to G. W.r.t.

3.15 Working with Borders* 65

1), note that if a hypothesis is a member of the G set, then all of its (proper)
specializations satisfy Q even though they cannot be maximally general and
therefore do not belong to G. W.r.t. 2), note that it is possible to test whether
a hypothesis h that satisfies Q is maximally general by computing ρ′i(h) and
testing whether elements of ρ′i(h) satisfy Q. Only if none of them satisfies Qcan
one conclude that h ∈ G. Here, ρ′i denotes an ideal generalization operator,
even though the general direction of the search is from general to specific.

Algorithm 3.6 Computing the G border general-to-specific.
Queue := {
};
Th := ∅;
while not Queue = ∅ do

Delete h from Queue
if Q(h,D) = true and h ∈ G then

add h to Th
else if Q(h,D) = false then

Queue := Queue ∪ρo(h)
end if

end while
return Th

The dual algorithm for computing G from specific to general can be ob-
tained by starting from ⊥ and by generalizing only those hypotheses h that
satisfy Q (and do not belong to G). Even though the two algorithms compute
the same result, the efficiency with which they do so may vary significantly.
The direction that is to be preferred typically depends on the application.

By exploiting the dualities, one can devise algorithms for computing S as
well as the negative borders.

Exercise 3.33. Compute the S set for the problem of Ex. 3.3 using the
general-to-specific algorithm.

3.15.2 Computing Two Borders

Second, consider computing the borders of a version space as illustrated in Fig.
3.8. This could be the result of a quality criterion Q that is the conjunction of
an anti-monotonic and a monotonic predicate. To compute these borders, we
can proceed in several ways. One of these first computes one border (say the
S set) using the techniques sketched above and then uses that set to constrain
the computation of the other border (say the G set). When searching from
general to specific for the G set and with the S set already given, hen all
hypotheses h that are not more general than an element in the S set can
safely be pruned in Algo. 3.6. By exploiting the various dualities, further
algorithms can be obtained.

66 3 An Introduction to Learning and Search

Example 3.34. Suppose S={s ∧ m ∧ c}. When computing G from general to
specific, b and all its refinements can be pruned because ¬(b � s ∧ m ∧ c).

3.15.3 Computing Two Borders Incrementally

Third, suppose that one is given already a version space (characterized by its S
and G sets) and the task is to update it in the light of an extra constraint. This
is the setting for which the original theory of version spaces was developed
by Tom Mitchell. He considered concept-learning, which is concerned with
finding all hypotheses satisfying rfreq(h, P) = 1∧ rfreq(h,N) = 0 w.r.t. sets
of positive and negative examples P and N . This criterion can be rewritten
as:

p1 ∈ c(h) ∧ . . . ∧ pk ∈ c(h) ∧ n1 �∈ c(h) ∧ ... ∧ nl �∈ c(h) (3.34)

where the pi and the nj are the members of P and N , respectively. Mitchell’s
candidate elimination algorithm processed the examples incrementally, that
is, one by one, by updating S and G to accommodate the new evidence. His
algorithm is shown in Algo. 3.7.

Algorithm 3.7 Mitchell’s candidate elimination algorithm
S := {⊥} ; G := {
}
for all examples e do

if e ∈ N then
S := {s ∈ S | e ∈ c(s)}
for all g ∈ G : e ∈ c(g) do

ρg := {g′ ∈ ms(g, e) | ∃s ∈ S : g′ � s}
G := G ∪ ρg

end for
G := min(G)

else if e ∈ P then
G := {g ∈ G | e �∈ c(g)}
for all s ∈ S : e �∈ c(s) do

ρs := {s′ ∈ mgg(s, e) | ∃g ∈ G : g � s′}
S := S ∪ ρs

end for
S := max(S)

end if
end for

The algorithm employs a new operation ms(g, e), the minimal specializa-
tion w.r.t. e:

ms(g, e) = min({g′ ∈ Lh | g � g′ ∧ e �∈ c(g′)}) (3.35)

Example 3.35. Applied to item-sets over I, this yields

3.15 Working with Borders* 67

ms(M1,M2) =
{
{M1} if ¬(M1 � M2)
{M1 ∪ {i} | i ∈ I − (M1 ∪ M2)} otherwise (3.36)

For instance, ms(s, s ∧ m) = {s ∧ c, s ∧ b} and ms(s, s ∧ m ∧ b) = {s ∧ s}.
The candidate elimination algorithm works as follows. It starts by initializ-

ing the S and G sets to the ⊥ and � elements, respectively. It then repeatedly
updates these sets whenever the next example is not handled correctly by all
the elements of S and G. Let us now sketch the different steps for a positive
example (the ones for a negative one are dual). Whenever an element g of
G does not cover the positive example e, the element g is too specific and is
pruned away. This is because in order to cover e, the hypothesis g should be
generalized, but this is not allowed since it would yield hypotheses that lie
outside the current version space. Secondly, whenever an element s of S does
not cover the positive example e, the mgg operator is applied on the elements
g and e, yielding a set mgg(e, g) of minimally general generalizations. From
this set, only those elements are retained that lie within the version space,
that is, those that are more specific than an element of G. Finally, only the
maximal elements of S are retained in order to obtain a proper border and to
remove redundancies. Without this step, the algorithm still works correctly
in the sense that all elements of the version space will lie between an element
of S and G. It may only be that some elements are redundant and do not lie
at the proper border.

Example 3.36. Let us now employ the candidate elimination algorithm to the
sets of examples P = {{s,m, b}, {s, c, b}} and N = {{b}, {b, c}}. So, the re-
sulting S and G form the answer to Exer. 3.20. When first processing the
positive examples and then the negative ones, the following sequence of S and
G sets is obtained:

S={⊥} G={�}
S={s ∧ m ∧ b} G={�}
S={s ∧ b} G={�}
S={s ∧ b} G={s}

Exercise 3.37. What happens to S and G when the examples are processed
in a different order? Process the negative examples before the positive ones.

The use of version space representations for concept learning has some
interesting properties. When the S and G sets become identical and contain
a single hypothesis, one has converged upon a single solution, and when S
or G becomes empty, no solution exists. Finally, the intermediate borders
obtained using an incremental algorithm (such as the candidate elimination
algorithm) can be used to determine whether a hypothesis h can still belong
to the solution space. Furthermore, when learning concepts, the intermediate
borders can be used to determine which examples contain new information.
Indeed, under the assumption that a solution to the concept learning task
exists within Lh, any example covered by all elements in S must be positive,
and any example covered by no element in G must be negative.

68 3 An Introduction to Learning and Search

Exercise 3.38. * When Lh= Le, the constraint e ∈ c(h) can often be rewrit-
ten as h � e, and the dual one, e �∈ c(h), as ¬(h � e), where h is the target
hypothesis and e a specific positive or negative example. Consider now the
dual constraints e � h and ¬(e � h). Are these constraints monotonic or
anti-monotonic? Also, can you illustrate the use of these constraints and com-
pute the corresponding version space? Finally, can you extend the candidate
elimination algorithm to work with these constraints?

Exercise 3.39. Try to learn the father/2 predicate (in a relational learning
setting) in the following context. Let the background theory B be the set of
facts

male(luc) ← parent(luc, soetkin) ←
female(lieve) ← parent(lieve, soetkin) ←
female(soetkin) ←

the hypothesis language Lh consist of single clauses, Lh= {father(X,Y)←
body | body ⊆ {parent(X,Y), parent(Y,X),male(X), female(X), female(Y)}},
and let P = {father(luc, soetkin)}, and N = {father(lieve, soetkin), father(luc,
luc)}

The candidate elimination algorithm illustrates how the borders of a ver-
sion space can be computed incrementally. The candidate elimination algo-
rithm works with constraints in the form of positive and negative examples.
One remaining question is whether one can also devise algorithms that incre-
mentally process a sequence of other types of monotonic and anti-monotonic
constraints. One way of realizing this adapts Algo. 3.6. We discuss how to
process an extra monotonic constraint Q w.r.t. to an already existing version
space characterized by G and S.

The adaptation works as follows. First, the elements of S that do not
satisfy Q are discarded. Second, the approach of Algo. 3.6 is taken but 1) all
hypotheses that are not more general than an element of S are pruned, and 2)
only those hypotheses that are more specific than an element of the original
G set are tested w.r.t. Q.

3.15.4 Operations on Borders

Another approach to incrementally process a conjunction of monotonic and
anti-monotonic constraints intersects version spaces. Version space intersec-
tion employs the following operations:

ints(S1, S2) = max
(
{s | s ∈ mgg(s1, s2) with s1 ∈ S1 ∧ s2 ∈ S2}

)
(3.37)

intg(G1, G2) = min
(
{g | g ∈ mgs(g1, g2) with g1 ∈ G1 ∧ g2 ∈ G2}

)
(3.38)

The following property, due to Hirsh [1990], holds

3.17 Bibliographical Notes 69

Property 3.40. Let V S1 and V S2 be two version spaces with border sets S1, G2

and S2, G2, respectively. Then V S = V S1 ∩ V S2 has border sets ints(S1, S2)
and intg(G1, G2) respectively.

Version space intersection can now be used for learning concepts. To realize
this, compute the version spaces that correspond to each of the single examples
and incrementally intersect them.

Exercise 3.41. Solve the concept learning task in Exer. 3.20 by applying
version space intersection.

3.16 Conclusions

This chapter started by formalizing data mining and machine learning tasks
in a general way. It then focused on mechanisms for computing the set of
solutions Th(Q,D,Lh). The search space Lh was structured using the im-
portant generality relation. Various quality criteria were proposed and their
properties, most notably monotonicity and anti-monotonicity, were discussed.
It was shown that these properties impose borders on the set of solutions
Th(Q,D,Lh), and the notion of a version space was introduced. To compute
Th(Q,D,Lh) various algorithms were presented. They employ refinement op-
erators which are used to traverse the search space. Ideal operators are es-
pecially useful for performing heuristic search and optimal ones for complete
search. Some of the algorithms work from general to specific, other ones from
specific to general. Finally, some algorithms work with the borders and there
are algorithms (such as candidate elimination) that are bidirectional.

3.17 Bibliographical Notes

The formulation of the data mining task using Th(Q,D,Lh) is due to Man-
nila and Toivonen [1997]. The notions of generality and border sets and their
use for machine learning are due to Mitchell [1982, 1997] and, in a data min-
ing context, to Mannila and Toivonen [1997]. The material presented here
follows essentially the same lines of thought as these earlier works but per-
haps presents a more integrated view on data mining and concept learning.
The algorithms contained in this section are derived from [Mitchell, 1982,
1997, Mannila and Toivonen, 1997, De Raedt and Kramer, 2001, De Raedt
and Bruynooghe, 1992a, Morishita and Sese, 2000]. Many of them belong to
the folklore of machine learning and data mining. Algorithm 3.3 has a fa-
mous instantiation in the context of item-set and association rule mining;
cf. [Agrawal et al., 1993]. Refinement operators were introduced in inductive
logic programming in Ehud Shapiro’s seminal Ph.D. thesis [1983]. Their prop-
erties were later studied by Nienhuys-Cheng and de Wolf [1997]. The notion
of an ideal refinement operator introduced has been slightly adapted (w.r.t.

70 3 An Introduction to Learning and Search

[Nienhuys-Cheng and de Wolf, 1997]) for educational purposes. The notion of
an optimal refinement operator in relational learning is due to De Raedt and
Bruynooghe [1993].

