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Abstract

Standard models of language learning are concerned with weak learning: the learner, receiving as

input only information about the strings in the language, must learn to generalise and to generate

the correct, potentially infinite, set of strings generated by some target grammar. Here we define

the corresponding notion of strong learning: the learner, again only receiving strings as input, must

learn a grammar that generates the correct set of structures or parse trees. We formalise this using

a modification of Gold’s identification in the limit model, requiring convergence to a grammar that

is isomorphic to the target grammar. We take as our starting point a simple learning algorithm for

substitutable context-free languages, based on principles of distributional learning, and modify it

so that it will converge to a canonical grammar for each language. We prove a corresponding strong

learning result for a subclass of context-free grammars.

Keywords: context-free grammars, grammatical inference, identification in the limit, structure

learning

1. Introduction

We present an algorithm for inducing a context-free grammar from a set of strings; this algorithm

comes with a strong theoretical guarantee: it works in polynomial time, and for any grammar in

a certain class it will converge to a grammar which is isomorphic/strongly equivalent to the target

grammar. Moreover the convergence is rapid in a technical sense. This very strong guarantee

comes of course at a price: the class of grammars is small. In the first part of the paper we explain

the learning model we use which is an extension of the Gold identification in the limit model; and in

the second part we present an algorithm which learns a class of languages with respect to this model.

We have implemented this algorithm and we present some examples at the end which illustrate the

properties of this algorithm, testing on some simple example languages. As far as we are aware

this is the first nontrivial algorithm for learning trees from strings which has any sort of theoretical

guarantee of its convergence and correctness.

Our ultimate domain of application of these techniques is primarily in linguistics, where the

strings will be sequences of words in a natural language, but the techniques can be applied more

broadly to artificial languages, bioinformatics and other fields where the input data consists of

strings which have some hierarchical structure.
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We can contrast the approach here with the task of unsupervised parsing in computational lin-

guistics as exemplified by Cohn et al. (2010). Unsupervised parsers use a variety of heuristic ap-

proaches to extract a single tree for each sentence, taking as input a large natural language corpus,

and being evaluated against some linguistically annotated corpus. Here we are interested not in find-

ing the most likely parse, but in finding the set of allowable parses in a theoretically well-founded

way.

1.1 Linguistics

The notions of weak and strong generation are fundamental in the fields of mathematical and the-

oretical linguistics. A formal grammar weakly generates a set of strings, and strongly generates a

set of structures (Miller, 1999). We do not have the space for a full discussion of the rather subtle

methodological and indeed philosophical issues involved with which model is appropriate for study-

ing linguistics, which questions depend on what the subject matter of linguistics is taken to be; we

merely note that while mathematical attention has largely focused on the issues of weak generation,

many linguists are more concerned with the issues of strong generation and as a result take the weak

results to be largely irrelevant (Berwick et al., 2011). Indeed, taking a grammar as a model of human

linguistic competence, we are primarily interested in the set of structures generated. Unfortunately,

we have little or no direct evidence about the nature of these structures, notwithstanding recent ad-

vances in neuroimaging and psycholinguistics, and our sources of information are essentially only

about the set of strings that are weakly generated by the grammar, since these can be observed, and

our intuitions about the associated meanings.

We can define corresponding notions of weak and strong learning.1 Weak learning involves

merely learning a grammar that generates the right set of strings; strong learning involves learning

a grammar that generates the right set of structures (Wexler and Culicover, 1980, p. 58). Some

sentences are ambiguous and will require a grammar that generates more than one structure for a

particular sentence. We do not consider in this paper the problem of learning when the input to the

learner are trees; see for example Sakakibara (1990, 1992), Drewes and Högberg (2003) and López

et al. (2004). We consider only the problem where the learner has access to the flat strings alone,

but must infer an appropriate set of trees for each string in the language. Rather than observing the

derivation trees themselves, we observe only the yields of the trees.

Weak learning of context-free grammars and richer formalisms has made significant progress

in recent years (Clark and Eyraud, 2007; Yoshinaka, 2011; Yoshinaka and Kanazawa, 2011; Yoshi-

naka, 2012) but strong learning has received less attention. For CFGs this means that the hypothesis

needs to be isomorphic (assuming it is trim) or better yet, identical to the target grammar. We define

these notions of equivalence and the associated learning models in Section 3. Strong learning is

obviously impossible for the full class of context-free grammars since there are an infinite number

of structurally different context-free grammars that generate a given context-free language.

In this paper we work in a categorical model which assumes, unrealistically, a partition of the

strings into grammatical and ungrammatical, but probabilistically the situation is not better; given

a distribution defined by a probabilistic CFG (PCFG) there are infinitely many structurally different

CFGs that define the same set of distributions; in other words PCFGs are not identifiable from strings

(Hsu et al., 2013). This is in contrast to discrete HMMs which are (Petrie, 1969).

1. Note that this has nothing to do with strong and weak learners as those terms are used in the boosting literature in

machine learning (Schapire, 1999).
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LEARNING TREES FROM STRINGS

The contributions of this paper are as follows. We first define an appropriate notion of strong

learning from strings, restricting ourselves to the case of CFGs for simplicity. We then show that ex-

isting learning algorithms for regular languages (Angluin, 1982) can be viewed as also being strong

learning algorithms, in a trivial sense. We then present a strong learning algorithm for some CFGs,

based on combining the polynomial algorithm for substitutable context-free languages defined in

Clark and Eyraud (2007), which we recall in Section 4, with a recent proposal for a formal notion

of syntactic structure (Clark, 2011) that we interpret as a form of canonical grammars. We spec-

ify the canonical grammars we target in Section 5, present an algorithm in Section 6, and prove

its correctness and efficiency in Section 7. Section 8 contains some examples, including one with

an ambiguous grammar. An appendix contains some detailed proofs of various technical lemmas

regarding the properties of the languages we consider in this paper.

2. Notation

Let Σ be a finite non-empty set of atomic symbols. Σ∗ is the set of all finite strings over Σ. We

denote the empty string by λ. The set of non-empty strings is Σ+ = Σ∗ \ {λ}. We write |u| for the

length of a string u, and for a finite set of strings X we define the size as ‖X‖= ∑w∈X |w|.
A language L is any subset of Σ∗. Given two languages M,N ⊆ Σ∗ we write M ·N or sometimes

just MN for the set {uv | u ∈ M,v ∈ N}. Note that this is just the normal concatenation of sets of

strings.

Given a language D, we define Sub(D) to be the set of non-empty substrings of elements of D:

Sub(D) = {u ∈ Σ+ | ∃(l,r) ∈ Σ∗×Σ∗
, lur ∈ D}.

Given a non-zero sequence of languages α = 〈X1, . . . ,Xn〉 we write ᾱ for the concatenation, that

is, ᾱ = X1 · · · · ·Xn. We shall assume an order ≺ or � on Σ which we shall extend to the length-

lexicographic order on Σ∗.

We define a context (l,r) to be an ordered pair of strings, an element of Σ∗×Σ∗. The distribution

of a string u ∈ Σ∗ with respect to a language L is defined to be

DL(u) = {(l,r) ∈ Σ∗×Σ∗ | lur ∈ L}.

We say that u ≡L v iff DL(u) = DL(v). This is the syntactic congruence, which is equivalent to

complete mutual substitutability of u and v.

We write [u]L for {v ∈ Σ∗ | DL(u) = DL(v)}. If we have a set of strings, X , that are all congruent

then we write [X ] for the congruence class containing them. Note that for any strings u,v, [uv] ⊇
[u][v] so if X ,Y are congruence classes we can write [XY ] and the result is well defined.

The unique congruence class [λ] is called the unit congruence class. The set {u | DL(u) = /0}
if it is non-empty is a congruence class, which is called the zero congruence class. A congruence

class in a language L is non-zero iff it is a subset of Sub(L). We are mostly concerned with non-zero

non-unit congruence classes in this paper.

Definition 1 We will be considering sequences of congruence classes: so if α is a sequence X1, . . . ,Xn

where each of the Xi is a congruence class, then we write ᾱ for the set of strings formed by concate-

nating all of the Xi. We write |α| for the length of the sequence, n in this case. Note that all of the

elements of ᾱ will be congruent: if u,v ∈ ᾱ then u ≡L v. We can therefore write without ambiguity

[ᾱ] for the congruence class of the strings in ᾱ.

3539



CLARK

We say that u
.
=L v if there is some (l,r) such that lur ∈ L and lvr ∈ L. This is partial or weak

substitutability; u and v can be substituted for each other in the context (l,r). If u ≡L v and u,v have

a non-empty distribution then u
.
=L v, but the converse is clearly not true.

Definition 2 A language L is substitutable if for all u,v ∈ Σ+, u
.
=L v implies u ≡L v.

In other words, for any two non-empty strings u,v if DL(u)∩DL(v) 6= /0 then DL(u) = DL(v).
This language theoretic closure property allows us to define algorithms that generalise correctly,

even under pessimistic learning conditions.

2.1 Context-Free Grammars

A context-free grammar (CFG) G is a tuple G = 〈Σ,V, I,P〉 where V is a finite non-empty set of

nonterminals disjoint from Σ, I ⊆ V is a set of distinguished start symbols and P is a subset of

V × (V ∪Σ)+ called the set of productions. We write this as N → α. We do not allow productions

with a right hand side of length 0, and as a result the languages we consider will not contain the

empty string. We use GCFG for the class of all context-free grammars.

We define the standard notion of single-step derivation as ⇒ and define
∗
⇒ as the reflexive

transitive closure of ⇒; for all N ∈ V , L(G,N) = {w ∈ Σ∗ | N
∗
⇒ w}; and L(G) =

⋃
S∈I L(G,S).

Using a set of start symbols rather than a single start symbol does not change the generative capacity

of the formalism.

We say that a CFG is trim if for every nonterminal N there is a context (l,r) such that S
∗
⇒ lNr

for some S ∈ I and a string u such that N
∗
⇒ u: in other words every nonterminal can be used in the

derivation of some string.

We say that two CFGs, G and G′ are weakly equivalent if L(G) = L(G′).

Proposition 3 (Ginsburg, 1966) Given two CFGs, G and G′, it is undecidable whether L(G) =
L(G′).

Two CFGs are isomorphic if there is a bijection between the two sets of nonterminals which

extends to a bijection between the productions. In other words they are identical up to a relabeling

of nonterminals. We denote this by G ∼= G′. Clearly if two grammars are isomorphic then they are

weakly equivalent.

Proposition 4 Given two CFGs, G and G′, it is decidable whether G ∼= G′.

There is a trivial exponential time algorithm that involves searching through all possible bijec-

tions. This problem is GI-complete: as hard as the problem of graph isomorphism (Zemlyachenko

et al., 1985; Read and Corneil, 1977). We may not be able to do this efficiently for general CFGs.

3. Learning Models

We start by reviewing the basic theory of learnability using the Gold identification in the limit

paradigm (Gold, 1967). We consider only the model of given text—where the learner is provided

with positive data only. We assume a class of CFGs, G ⊆ GCFG.

A presentation of a language L is an infinite sequence of elements of Σ∗, w1,w2, . . . such that

L= {wi | i> 0}. Given a presentation T = 〈w1, . . .〉, we write Tn for the finite subsequence consisting
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of the first n elements. A polynomial learning algorithm is a polynomially computable function from

finite sequences of positive examples to GCFG.

Given a presentation T of some language L, we can apply A to the various prefixes of T , which

produces an infinite sequence of elements of GCFG, A(T1),A(T2), . . . . These are hypothesis gram-

mars; we will use Gi to refer to A(Ti), the ith hypothesis output by the learning algorithm.

Consider a target grammar G∗ ∈ G , and a sequence of hypothesized grammars G1,G2, . . . pro-

duced by a learning algorithm on a presentation T for L(G∗). There are various notions of conver-

gence of which we outline four, which vary on two dimensions: one dimension concerns whether

we are interested in weak or strong learning, and the other whether we are interested in controlling

the number of internal changes as well, or are only interested in the external behaviour.

Weak behaviorally correct learning (WBC)

There is an N such that for all n > N, L(Gn) = L(G∗).

Weak Gold learning (GOLD)

There is an N such that for all n > N, L(Gn) = L(G∗) and Gn = GN .

Strong behaviorally correct learning (SBC)

There is an N such that for all n > N, Gn
∼= G∗.

Strong Gold learning (SGOLD)

There is an N such that for all n > N, Gn
∼= G∗ and Gn = GN .

For each of these four notions of convergence, we have a corresponding notion of learnabil-

ity. We say that a learner, A, WBC/GOLD/SBC/SGOLD learns a grammar G∗, iff for every pre-

sentation of L(G∗), it WBC/GOLD/SBC/SGOLD converges on that presentation. Given a class of

CFGs, G , we say that A WBC/GOLD/SBC/SGOLD learns the class, iff for every G∗ in G the learner

WBC/GOLD/SBC/SGOLD learns G∗.

In the case of GOLD learning, this coincides precisely with the standard model of Gold iden-

tification in the limit from given text (positive data only) (Gold, 1967). WBC-learning is the stan-

dard model of behaviorally correct learning (Case and Lynes, 1982). We cannot in general turn a

WBC-learner into a GOLD-learner: see discussion in Osherson et al. (1986). The property of order-

independence as defined by Blum and Blum (1975), can be thought of as an even stronger version

of SGOLD learning.

However, a SBC-learner can be changed into a SGOLD-learner, if we can test whether two hy-

potheses are isomorphic. There does not seem to be a theoretically interesting difference between

SBC-learning and SGOLD-learning: the only difference, in the case of CFGs, is that the SBC learner

may occasionally pick different labels for the nonterminals after convergence, whereas the SGOLD

learner may not.

We can ask how can a GOLD learner differ from a SGOLD learner: how can a weak learner fail to

be a strong learner? The difference is that on different presentations of the same language, a weak

Gold learner may converge to different answers. That is to say we might have a learner which on

presentation T ′ of grammar G produces a grammar G′ and on presentation T ′′ of the same grammar,

produces a grammar G′′, where G′ and G′′ are weakly equivalent but not isomorphic.

Definition 5 We say that a class of context-free grammars is redundant if it contains two grammars

G1,G2 such that G1 6∼= G2 and L(G1) = L(G2).
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Proposition 6 Suppose that A is an algorithm which SGOLD-learns a class of grammars G . Then

G is not redundant.

The proof is immediate—any presentation for G1 is also a presentation for G2. In other words

if G contains two non-isomorphic grammars for the same language then it is not strongly learnable.

A simple corollary is then that the class of CFGs is not strongly identifiable in the limit even from

informed data, that is to say from labelled positive and negative examples, since there are an infinite

number of non-isomorphic grammars for every non-empty language.

One can therefore try to convert a weak learner to a strong learner by defining a canonical

form. If we can restrict the class so that there is only one structurally distinct grammar for each

language, and we can compute that, then we could find a strong learning algorithm. We formalise

this as follows. Suppose A is some learning algorithm that outputs grammars in a hypothesis class

HA ⊆ GCFG, and suppose that it can GOLD-learn the class of grammars G ⊆ HA . Suppose we have

some ‘canonicalisation’ function f from HA →GCFG such that for each G∈G , L(G)=L( f (G)) and

such that f (G) is not redundant. Then we can construct a learner A′ which outputs A′(Ti)= f (A(Ti)),
which will then be a SGOLD learner for G . Moreover, if A and f are both polynomially computable

then so will A′ be.

For example, suppose D is the class of all DFAs and f is the standard function for minimizing a

deterministic finite-state automaton (DFA), which can be done in polynomial time. Since all minimal

DFAs for a given regular language are isomorphic, f (D) is not redundant. Therefore any learner

for regular languages that outputs DFAs, such as the one in Angluin (1982), can be converted into

a strong learner using this technique. From the point of view of structural learning such results

are trivial in two important respects. The first is that each string in the language has exactly one

labelled structure, and the other is that every structure is uniformly right branching, whereas we

are interested in learning grammars which may assign more than one different structure to a given

string.

Moreover, it is easy to see that any SGOLD-learner for a class of grammars G will implicitly

define such a canonicalisation function for G . We can enumerate the strings in the language and

apply the learner to them, and the limit of the hypothesis grammars will then satisfy the conditions

given above, though this function may not be computable. There is therefore a close relationship

between canonicalisers and strong learners. There is much more that could be said about the learning

models, and further refinements of them, but this is enough for our purposes.

4. Weak Learning of Substitutable Languages

We recall the Clark and Eyraud (2007) result, using a simplified version of the algorithm (Yoshinaka,

2008), and explain why it is only a weak rather than a strong result.

Given a finite non-empty set of strings D = {w1, . . . ,wn} the learner constructs a grammar as

shown in Algorithm 1. We create a set of symbols in bijection with the elements of Sub(D) where we

write [[u]] for the symbol corresponding to the substring u: that is to say we have one nonterminal

for each substring of the observed data. The grammar Ĝ(D) is the CFG 〈Σ,V, I,PL ∪PB ∪PU〉 as

shown in the pseudocode in Algorithm 1. The sets PL,PB and PU are the sets of lexical, branching

and unary productions respectively.

Example 1 Given a set D = {c,acb}, we have Sub(D) = {a,b,c,ac,cb,acb}, and corresponding

sets: V = {[[a]], [[b]], [[c]], [[ac]], [[cb]], [[acb]]}, I = {[[c]], [[acb]]}, PL = {[[a]]→ a, [[b]]→ b, [[c]]→
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Algorithm 1 Grammar construction procedure

Data: A finite set of strings D = {w1,w2, . . . ,wn}
Result: A CFG G

V := Sub(D);
I := {[[u]] | u ∈ D};

PL := {[[a]]→ a | a ∈ Σ∩V};

PB := {[[uv]]→ [[u]][[v]] | u,v,uv ∈V};

PU := {[[u]]→ [[v]] | ∃(l,r)∧ lur ∈ D∧ lvr ∈ D};

output G = 〈Σ,V, I,PL ∪PB ∪PU〉

c}, PB = {[[ac]] → [[a]][[c]], [[cb]] → [[c]][[b]], [[acb]] → [[ac]][[b]], [[acb]] → [[a]][[cb]]} and PU =
{[[c]]→ [[acb]], [[acb]]→ [[c]]}. As can be verified this CFG defines the language {ancbn | n ≥ 0}.

There are two natural ways to turn this grammar construction procedure into a learning algo-

rithm. One is simply to apply this procedure to all of the available data. This will give a WBC-learner

for the class of substitutable CFGs.

Alternatively since we can parse with the grammars, we can convert this into a GOLD learner,

by only changing the hypothesis when the hypothesis is demonstrably too small. This means that

once we have a weakly correct hypothesis the learner will no longer change its output. This simple

modification gives a variant of the learner in Clark and Eyraud (2007). However this does not mean

that this is a strong learner, since it may converge to a different hypothesis for different presenta-

tions of the same language. For example if a presentation of the language from Example 1 starts

{a,acb, . . .} then the learner will converge in two steps to the grammar shown in Example 1. If

on the other hand, the presentation starts {acb,aacbb, . . .} then it will also converge in two steps,

but to a different, larger, grammar that includes nonterminals such as [[aa]] and has a larger set of

productions. This grammar is weakly equivalent to the former grammar, but it is not isomorphic

or structurally equivalent, as it will assign a larger set of parses to strings like aacbb. It is more

ambiguous. Indeed it is easy to see that this grammar will assign every possible binary branching

structure to any string that is part of the set that the grammar is constructed from. And of course,

the presentation could start with an arbitrarily long string—in which case the first grammar which

it generates could be arbitrarily large.

5. The Syntactic Structure of Substitutable Languages

In this section we use a modification of Clark (2011) as the basis for our canonical grammars;

in the case of substitutable languages the theory is quite simple so we will not present it in all

its generality. Each nonterminal/syntactic category will correspond to a congruence class. With

substitutable languages, we can show that the language itself, considered as a set of strings, has a

simple intrinsic structure that can be used to define a particular finite grammar.

We start with the following definition:

Definition 7 A congruence class X is prime if it is non-zero and non-unit and for any two congru-

ence classes Y,Z such that X =Y ·Z then either Y or Z is the unit. If a non-zero non-unit congruence

class is not prime then we say it is composite.
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In other words a class is not prime if it can be decomposed into the concatenation of two other

congruence classes. The stipulation that the unit and zero congruence classes are not prime is

analogous to the stipulation that 1 is not a prime number. We will not give a detailed exposition of

why the concept of a prime congruence class is important, but one intuitive reason is this. If we have

nonterminals that correspond to congruence classes, and a congruence class N is composite, then

that means that we can decompose N into two classes P,Q such that N = PQ. In that case we can

replace every occurrence of N on the right hand side of a rule by the sequence 〈P,Q〉; assuming that

P and Q can be represented adequately, nothing will be lost. Thus non-prime congruence classes

can always be replaced by a sequence of prime congruence classes, and we can limit our attention

to the primes which informally are those where “the whole is greater than the sum of the parts”.

More algebraically, we can think of the primes as representing the points where the concatenation

operations in the free monoid and the syntactic monoid differ in interesting ways.

Example 2 Consider the language L = {ancbn | n ≥ 0}. This language is not regular and therefore

has an infinite number of congruence classes of which three are prime. The congruence classes are

as follows:

• {λ} is a congruence class with just one element; this is the unit congruence class which is

not prime.

• The zero congruence class which consists of all strings that have empty distribution.

• L is a congruence class which is prime.

• [a] = {a} is prime as is [b] = {b}.

• We also have an infinite number of congruence classes of the form {ai} for any i > 1. These

are all composite as they can be represented as [a] · [ai−1]; similarly for {bi}.

• Similarly we have classes of the form [aic] = {ai+ jcb j | j ≥ 0} and [cbi] = {a jcbi+ j | j ≥ 0}
which again are composite.

L is not always prime as the following trivial example demonstrates.

Example 3 Consider the finite language L = {ab}. This language has 5 congruence classes:

[a], [b], [ab], [λ] and the zero congruence class. The first 4 are all singleton sets. [a] and [b] are

prime but [ab] = {ab}= [a][b], and so L is not prime.

Proposition 8 For every a ∈ Σ, for any language L, if [a] is non-zero and non-unit then [a] is prime.

Proof Let a be some letter in a language L and let [a] be its congruence class. Suppose there are

two congruence classes X ,Y such that XY = [a]. Since a ∈ [a], a must be in XY . Since we cannot

split a string of length 1 into two non-empty strings, one of X and Y must be the unit.

We can now define the class of languages that we target with our learning algorithm.

Definition 9 Let Lsc be the set of all languages which are substitutable, non-empty, do not contain

λ and have a finite number of prime congruence classes.
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Given that there are substitutable languages which are not CFLs—the MIX language (Kanazawa

and Salvati, 2012) being a good example—we need to restrict the class in some way. Here we

consider only languages where there are a finite number of prime congruence classes. This implies,

as we shall see later, that the language is a CFL. Every regular language of course has a finite

number of primes as it has a finite number of congruence classes. Not all substitutable context-free

languages have a finite number of primes, as this next example shows.

Example 4 Consider the language L = {cibaib | i > 0}∪{cideid | i > 0}. This is a substitutable

context-free language. The distribution of baib is the single context {(ci,λ)} which is the same as

that of deid. Therefore we have an infinite number of congruence classes of the form {baib,deid},

each of which is prime.

Definition 10 A prime decomposition of a congruence class X is a finite sequence of one or more

prime congruence classes α = 〈X1, . . . ,Xk〉 such that X = ᾱ.

Clearly any prime congruence class X has a trivial prime decomposition of length one, namely

〈X〉. We have a prime factorization lemma for substitutable languages; we can rather pompously call

this the ‘fundamental lemma’ by analogy with the fundamental lemma of arithmetic. This lemma

means that we can represent all of the congruence classes exactly using just concatenations of the

prime congruence classes.

Lemma 11 Every non-zero non-unit congruence class of a language in Lsc has a unique prime

factorisation.

For proof see Lemma 33 in the appendix. Note that this is not the case in general for languages

which are not substitutable, as the following example demonstrates.

Example 5 Let L = {abcd,apcd,bx}. Note that L is finite but not substitutable since p 6≡ b. Among

the congruence classes are {a},{b},{c} {ab,ap}, {bc, pc} and {abc,apc}. Clearly {ab,ap},

{bc, pc} are both prime but {abc,apc} is composite and has the two distinct prime decompositions

{ab,ap} · {c} and {a} · {bc, pc}.

If we restrict ourselves to languages in Lsc then we can assume without loss of generality that

the nonterminals of the generating grammar correspond to congruence classes. In a substitutable

language, a trim CFG cannot have a nonterminal that generates two strings that are not congruent.

Similarly, if the grammar had two distinct nonterminals that generated congruent strings, we could

merge them without altering the generated language.

Given that non-regular languages will have an infinite number of congruence classes, and that

CFGs have by definition only a finite number of nonterminals, we cannot have one nonterminal for

every congruence class. However in languages in Lsc there are only finitely many prime congru-

ence classes, and since every other congruence class can be represented perfectly as a sequence of

primes, it is sufficient to consider a grammar which has nonterminals that correspond to the primes.

Therefore we will consider grammars whose nonterminals correspond only to the prime congruence

classes of the grammar: we add one extra nonterminal S, a start symbol, which will not appear on

the right hand side of any rule.
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5.1 Productions

We now consider an abstract notion of a production where the nonterminals are the prime congru-

ence classes.

Definition 12 A correct branching production is of the form [ᾱ] → α where α is a sequence of at

least 2 primes and [ᾱ] is a prime congruence class. A correct lexical production is one of the form

[a]→ a where a ∈ Σ, and [a] is prime.

Example 6 Consider the language L = {ancbn | n ≥ 0}. This has primes [a], [c] and [b]. The correct

lexical productions are the three obvious ones [a] → a, [b] → b and [c] → c. The only correct

branching productions have [c] on the left hand side, and are [c]→ [a][c][b], [c]→ [a][a][c][b][b] and

so on.

Clearly in the previous example we want to rule out productions like [c]→ [a][a][c][b][b] since

the right hand sides are too long, and will make the derivation trees too flat. We want each pro-

duction to be as simple as possible. Informally we say that the right hand side of the production

[a][a][c][b][b] is too long since there is a proper subsequence [a][c][b] which generates strings in a

prime congruence class, and should be represented just by the prime [c].

Definition 13 We say that a sequence of primes α is pleonastic (too long) if α= γβδ for some γ,β,δ,

which are sequences of primes, such that |γ|+ |δ|> 0, [β̄] is a prime, and |β|> 1.

Definition 14 We say that a correct production N → α is pleonastic if α is pleonastic. A correct

production is valid if it is not pleonastic.

Note that a pleonastic production by definition must have a right hand side of length at least 3.

For any string w in a prime congruence class where w = a1 . . .an, ai ∈ Σ we can construct

a correct production [w] → [a1] . . . [an]. Such productions may in general be pleonastic because

there may be substrings that can be represented by prime congruence classes. From a structural

perspective, the local trees derived from these productions are too shallow as they flatten out relevant

parts of the structure of the string. Nonetheless we can find a set of valid productions that will

generate the string w from the nonterminal [w], as Lemma 18 below shows.

5.2 Canonical Grammars

We will now define canonical grammars for every language L in Lsc. Note that for every language

in Lsc, L is a congruence class.

First of all we need the following lemma to establish that the grammar will be finite: see proof

of Lemma 35 in the appendix.

Lemma 15 If L ∈ Lsc then there are a finite number of valid productions.

Definition 16 Let L be some language in Lsc. We define the following grammar, G∗(L). The non-

terminals are the prime congruence classes of L, together with an additional symbol S, which is the

start symbol. Let α(L) be the unique prime decomposition of L. We define the set of productions, P,

to have the following elements:
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• the single production containing the start symbol: S → α(L),

• all valid productions, of which there are only finitely many by Lemma 15,

• for each terminal symbol a that occurs in the language, the production [a]→ a.

This is a unique CFG for every language in Lsc. We now show that G∗(L) generates L.

Lemma 17 If L ∈ Lsc is a substitutable language, then for any prime congruence class X,

L(G∗(L),X)⊆ X.

Proof This is a simple induction on the length of the derivation. For X → a, we know that a ∈ X by

construction. Suppose Xi
∗
⇒ ui for all 1 ≤ i ≤ n and X0 → X1 . . .Xn is a production in the grammar.

Then by the inductive hypothesis ui ∈ Xi and by the correctness of the production, u1 . . .un ∈ X0.

Lemma 18 Suppose X → α is a correct production. Then X
∗
⇒G∗(L) α.

Proof By induction on the length of α. Base case: α is of length 2, in which case it cannot be

pleonastic, and so X → α is valid and in G∗(L), and therefore X
∗
⇒ α. Inductive step: consider a

correct production X → α where α is of length k. If it is not pleonastic, then it is valid, and so

X → α is a production in G∗(L), and so X
∗
⇒ α. Alternatively it is pleonastic and therefore α = βγδ

where γ is the right hand side of a correct production, Y → γ. Consider X → βY δ, and Y → γ. Both

βY δ and γ are shorter than α, and so by the inductive hypothesis X
∗
⇒ βY δ and Y

∗
⇒ γ so X

∗
⇒ α. So

the lemma follows by induction.

Lemma 19 Suppose X is a prime, and w ∈ X. Then X
∗
⇒G∗(L) w.

Proof If w is of length 1, then we have X → w. Let w = a1 . . .an be some string of length n > 1.

Let α = [a1] . . . [an]. So X → α is a correct production. Therefore by Lemma 18 X
∗
⇒ α. Since we

have the lexical rules [ai]→ ai we can also derive α
∗
⇒ w.

Proposition 20 For any L ∈ Lsc, L(G∗(L)) = L.

Proof Suppose L has prime factorisation A1 . . .An. S occurs on the left hand side of the single pro-

duction S → A1 . . .An. Since L(G∗(L),Ai) = Ai by Lemmas 17 and 19, L(G∗(L),S) = A1 . . .An = L.

Definition 21 We define Gsc to be the set of canonical context-free grammars for the languages in

Lsc:

Gsc = {G∗(L) | L ∈ Lsc}.

Lemma 22 Gsc is not redundant.

Proof Suppose we have two weakly equivalent grammars G1,G2 in this class; then G1 =
G∗(L(G1)) = G∗(L(G2)) = G2 and so they are isomorphic.
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6. An Algorithm for Strong Learning

We now present a strong learning algorithm. We then demonstrate in Section 7 that for all grammars

in Gsc the algorithm strongly converges in the SGOLD framework.

In outline, the algorithm works as follows; we accumulate all of the data that we have seen so

far into a finite set D. We start by using Algorithm 1 to construct a CFG Gw which will be weakly

correct for a sufficiently large input data. Using this observed data, together with the grammar

which is used for parsing, we can then compute the canonical grammar for the language as follows.

1. We partition Sub(D) into congruence classes, with respect to our learned grammar Gw.

2. We pick the lexicographically shortest string in each class as the label we will use for the

nonterminal.

3. We then test to see which of the congruence classes are prime.

4. Each class is decomposed uniquely into a sequence of primes.

5. A set of valid rules is constructed from the strings in the prime congruence classes.

6. We then eliminate pleonastic productions from this set of productions.

7. Finally, we return a grammar Gs constructed from these productions.

We can perform the first task efficiently, using the grammar and the substitutability property.

Given that each string in Sub(D) occurs in the sample D, for each substring u we have some context

(l,r) such that lur ∈ D. Given the substitutability condition, v is congruent to u iff lvr ∈ L(G∗).
Under the assumption that the grammar is correct we can test this by seeing whether lvr ∈ L(Gw),
using a standard polynomial parser, such as a CKY parser.

We now have a partition of Sub(D) into k classes C1, . . . ,Ck. We pick the lexicographically

shortest element of each class (with respect to ≺) which we denote by u1, . . . ,uk. Given a class,

we want to test whether it is prime or not. Take the shortest element w in the class. Test every

possible split of w into non-zero strings u,v such that uv = w. Clearly there are |w| − 1 possible

splits—for each split, identify the classes of u,v and test to see whether every element in the class

can be formed as a concatenation of these two. If there is some string that cannot be split, then we

know that the congruence class must be prime. If on the other hand we conclude that the class is not

prime, we might potentially be wrong: we might for example think that X =Y Z simply because we

have not yet observed one of the strings in X \Y Z. We present the pseudocode for this procedure in

Algorithm 2.

For all of the non-prime congruence classes, we now want to compute the unique decomposition

into primes. There are a number of obvious polynomial algorithms. We start by taking the shortest

string w in a class; suppose it is of length n consisting of a1 . . .an. We convert this into a sequence

of primes [a1] . . . [an]. We then greedily convert this into a unique shortest sequence of primes

by checking every proper subsequence of length at least 2, and seeing if that string is in a prime

congruence class. If it is then we replace that subsequence by the prime. We repeat until there are

no proper subsequences that are primes. Alternatively we can use a shortest path algorithm. We

create a graph which has one node for each 0,1, . . . ,n. We create an arc from i → j if the substring

spanning [i, j] is prime. We then take the shortest path from 0 to n; and read off the sequence of
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Algorithm 2 Testing for primality

Data: A set of strings X

Data: A partition of strings X = {X1, . . . ,Xn}, such that Sub(X)⊆
⋃

X
Result: True or false

Select shortest w ∈ X ;

for u,v ∈ Σ+ such that uv = w do

Xi ∈ X is the set such that u ∈ Xi;

X j ∈ X is the set such that v ∈ X j;

if X ⊆ XiX j then

return false;

end if

end for

return true;

primes by looking at the primes of the relevant segments. Note that since the lexical congruence

classes are all prime, we know there will be at least one such path; since the language is substitutable

we know this will be unique.

We then identify a set of valid productions. Every valid production will be of the form N → Mα

where N,M are primes and α is a prime decomposition of length at least 1. For any given N,M there

will be at most one such rule. Accordingly we loop through all triples of N and M,Q as follows:

for each prime N, for each prime M, for each class Q, take α to be the prime decomposition of Q,

and test to see if N → Mα is valid. We can test if it is correct easily by taking any shortest string

u from M and any shortest string v from α and seeing if uv ∈ N; if it does then the rule is correct.

Then we can test if it is valid by taking every proper prefix of Mα of length at least two and testing

if it corresponds to a prime. If no prefix does then the production is not pleonastic and is therefore

valid.

For the lexical productions, we simply add all productions of the form [a]→ a where a ∈ Σ. For

the initial symbol S, we identify the unique congruence class of strings in the language X . If it is

prime, then we add a rule S → X . If it is not prime, and α is its unique prime decomposition then

we add the rule S → α.

7. Analysis

We now proceed to the analysis of Algorithm 3, the learner ASGOLD. We want to prove three things:

first that the algorithm strongly learns a certain class; secondly, that the algorithm runs in polyno-

mial update time; finally that the algorithm converges rapidly, in the technical sense that it has a

polynomially sized characteristic set.

We now are in a position to state our main result. We have defined a learning model, SGOLD, an

algorithm ASGOLD and a class of grammars Gsc.

Theorem 23 ASGOLD SGOLD-learns the class of grammars Gsc.

In order to prove this we will show that for any presentation of a grammar in the class we will

converge strongly to a grammar isomorphic to the canonical grammar. In what follows we suppose

G∗ is a grammar in Gsc, and that L∗ = L(G∗). For a grammar G∗ ∈ Gsc, we define χ(G∗) to be
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Algorithm 3 ASGOLD Strong Gold Learning Algorithm

Data: A sequence of strings w1,w2, . . .

Data: Σ

Result: A sequence of CFGs G1,G2, . . .

let D :=∅;

for n = 1,2, . . . do

let D := D∪{wn};

Ĝ = Ĝ(D);
Let C be the partition of Sub(D) into classes;

Let Pr be the set of primes computed using Algorithm 2;

For each class N in C compute the prime decomposition α(N) ∈ Pr+;

Let V = {[[N]] | N ∈ Pr} be a set of nonterminals each labeled with the lexicographically

shortest element in its class;

Let S be a start symbol;

PL = {[[N]]→ a | [[N]] ∈V,a ∈ Σ∩N};

PI = {S → [[N]] | ∃w ∈ N,w ∈ D};

PB = /0;

for N ∈ Pr, M ∈ Pr, Q ∈C do

R = (N → Mα(Q));
if R is correct and valid then

PB = PB ∪{R};

end if

end for

output Gn := 〈Σ,V ∪{S},{S},PL ∪PB ∪PI〉;
end for

a sufficiently large, yet polynomially bounded set of strings from L(G∗) such that when the input

data includes this set, the weak grammar output will be correct (Clark and Eyraud, 2007) and which

contains the shortest string in each prime congruence class.

Definition 24 For a grammar G = 〈Σ,V, I,P〉 we define χ(G) as follows. For any α ∈ (Σ∪V )+ we

define w(α) ∈ Σ+ to be the smallest word, according to ≺, generated by α. Thus in particular for

any word u ∈ Σ+, w(u) = u. For each non-terminal N ∈ V define c(N) to be the smallest pair of

terminal strings (l,r) (extending ≺ from Σ∗ to Σ∗×Σ∗, in some way), such that S
∗
⇒ lNr. We now

define the characteristic set χ(G∗) = {lwr | (N → α) ∈ P,(l,r) = c(N),w = w(α)}.

We prove the correctness of the rest of the model under the assumption that the input data

contains χ(G∗) and as a result that Gw is weakly correct: L(Gw) = L(G∗). First, if Gw is correct,

then the partition of Sub(D) into congruence classes will be correct in the sense that two strings of

Sub(D) will be in the same class iff they are congruent.

Lemma 25 Suppose X1, . . . ,Xn is a correct partition of Sub(D) into congruence classes. Then if

Algorithm 2 returns true when applied to Xi, then [Xi] is in fact prime.

Proof Suppose [Xi] is not prime: then there are two congruence classes Y,Z such that [Xi] = Y Z.

Consider a string w ∈ Xi. There must be strings u,v such that w = uv and u ∈ Y,v ∈ Z. Since
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w ∈ Sub(D), u,v ∈ Sub(D). Since the partition of Sub(D) is correct, there must be sets X j,Xk such

that u ∈ X j,v ∈ Xk. Therefore, using again the correctness and the fact that Sub(D) is substring

closed, we have that Xi ⊆ X jXk, in which case Algorithm 2 will return false.

Lemma 26 Suppose X1, . . . ,Xn is a correct partition of Sub(D) into congruence classes, and D ⊇
χ(G∗). Then Algorithm 2 returns true when applied to Xi, iff [Xi] is in fact prime.

Proof Xi is a finite subset of Sub(D), and we assume that all of the elements of Xi are in fact con-

gruent. We already showed one direction, namely that if the algorithm returns true then [Xi] is prime

(Lemma 25). We now need to show that if [Xi] is prime, then the algorithm correctly returns true.

If [Xi] is prime, then it will correspond to some nonterminal in the canonical grammar G∗, say N.

There will be more than one production in G∗ with N on the left hand side, and so by the construc-

tion of χ(G∗), and the correctness of the weak grammar, we will have at least one string from each

production in Sub(D), which means that since it is a correct partition the algorithm cannot find any

pair of classes whose concatenation contains Xi.

As a consequence of this Lemma, we know that the algorithm will be able to correctly identify

the set of primes of the language, and as a result will converge to the right set of nonterminals.

Proposition 27 If the input data includes χ(G∗), then Gs ∼= G∗.

Proof We can verify that all and only the valid productions will be generated by the algorithm by

the construction of the characteristic set.

Suppose N → X1 . . .Xn is a valid production in the grammar. Then by the construction of the

characteristic set we will have a unique congruence class in the grammar corresponding to [X2 · · ·Xn].
If n > 2 then this will be composite, and if n = 2 this will be prime, but in any event it will have

a unique prime decomposition which will be exactly 〈X2, . . . ,Xn〉, by Lemma 33. Therefore this

production will be produced by the algorithm.

Secondly suppose the algorithm produces some production N → X1, . . .Xn. We know that this

will be valid since X2, . . .Xn is a prime decomposition and is thus not pleonastic, and we tested all

of the prefixes. We know that it will be correct, by the correctness of the weak learner and the fact

that the congruence classes are correctly divided. It is easy to verify that the lexical and initial rules

are also correctly extracted.

To conclude the proof of Theorem 23, we just need to observe that since the characteristic set

includes the shortest element of each prime congruence class, and so the labels for each nonterminal

will not change which means that the output grammars will converge exactly.

We now consider the efficiency of the algorithm. It is easy show that this algorithm runs in

polynomial time in the size of the data set ‖D‖, noting first that |Sub(D)| is polynomial in ‖D‖,

and that as a result the grammars generated are all of polynomial size. Moreover the characteristic

set has cardinality which is polynomial in the size of the grammar, and whose size is polynomially

bounded in the thickness (Wakatsuki and Tomita, 1993).
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S → NT0

NT1 → b

NT2 → a

NT0 → c

NT0 → NT2 NT0 NT1

S → NT0

NT3 → open

NT2 → close

NT4 → neg

NT4 → NT0 NT1

NT0 → a

NT0 → b

NT0 → c

NT0 → NT3 NT4 NT0 NT2

NT1 → and

NT1 → iff

NT1 → implies

NT1 → or

S → NT0

NT2 → NT2 NT0

NT2 → NT0 NT2

NT2 → a

NT0 → NT0 NT0

NT0 → NT2 NT1

NT0 → NT1 NT2

NT1 → b

NT1 → NT1 NT0

NT1 → NT0 NT1

Table 1: Output grammars for the three examples; on the left the grammar for {ancbn | n ≥ 0}, in

the middlem the language of propositional logic, and on the right, the ambiguous grammar

for {w ∈ {a,b}+ | |w|a = |w|b}.

8. Examples

We have implemented the algorithm presented here.2 We present the results of running this al-

gorithm on small data sets that illustrate the properties of the canonical grammars for the learned

languages. These examples are not intended to demonstrate the effectiveness of the algorithm but

merely as illustrative examples to help the reader understand the representational assumptions, and

as a result we have restricted ourselves to very simple languages which will be easy to understand.

Nonterminals in the output grammar are either S for the start symbol or NT followed by a digit for

the congruence classes that correspond to primes.

8.1 Trivial Context-Free Language

Consider the running example of {ancbn | n ≥ 0}. A characteristic set for this is just {c,acb}.

Given this input data, we get the grammar shown on the left of Table 1. This defines the correct

language; Figure 1 shows the parse trees for the three shortest strings in the language. This grammar

is unambiguous so every string has only one tree.

8.2 Propositional Logic

Our next example is the language of sentential logic, with a finite number of propositional symbols.

We have the alphabet {A1, . . . ,Ak,(,),¬,∨,∧,⇒,⇔}. We would standardly define this language

with the CFG: S → Ai, S → (¬S), S → (S ∨ S), S → (S ∧ S), S → (S ⇒ S) and S → (S ⇔ S).
Note that in this language the brackets are part of the object language not the meta-language—the

algorithm does not know that they are brackets or what their function is. We replace them with other

symbols in the experiment to emphasize this point. Thus the algorithm is given only flat sequences

2. A Java implementation will be made available on the author’s website.
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S

NT 0

c

S

NT 0

NT 2

a

NT 0

c

NT 1

b

S

NT 0

NT 2

a

NT 0

NT 2

a

NT 0

c

NT 1

b

NT 1

b

Figure 1: Example parse trees for the example {ancbn | n ≥ 0}.

of strings—there is implicitly structural information here, but the algorithm must discover it, as it

must discover that the correct grammar is unambiguous. Sentential logic is an interesting example

because it illustrates a case where the algorithm works but produces a different parse tree, but one

that is still adequate for semantic interpretation. The canonical structure does not look like the

ancestral tree we would see in a textbook presentation (Enderton, 2001).

Since (¬A) and (A∨A) are both in the language, ¬∼=A∨, so the parse tree for (A∨B) will look a

little strange: the canonical grammar has pulled out some more structure than the textbook grammar

does: see Figure 2 for example trees. Nonetheless this is still suitable for semantic interpretation

and the grammar is still unambiguous.

We fix some input data, replacing the symbols with strings to obtain input data of { a, b, c, open

a and b close, open a or b close, open a implies c close, open a iff c close, open neg a close }. This

produces the grammar shown in the middle of Table 1, which is weakly correct. This generates one

tree for each string in the language as shown in Figure 2.

8.3 An Ambiguous Language

The next example is the language which consists of equal numbers of a’s and b’s in any order:

{w ∈ {a,b}+ | |w|a = |w|b}. We give the input data: {ab,ba,abab,abba,baba,bbaa}. The resulting

grammar has 10 productions as shown on the right of Table 1.

In this case the grammar is ambiguous and the number of parses for each string varies, depending

on properties of the string that are more complex than just the length. For example, the string abab

has 5 parses, the string abba has 3 and the string aabb has only 2.

9. Discussion

Our goal in this paper is to take a small but theoretically well-founded step in a novel direction. This

is not merely a new learning result but a new type of learning result: a strong learning result for a

class of languages that includes non-regular languages. The main points of this paper are to define

the learning model, and to establish that it is possible to obtain such results for at least some CFGs

from positive strings alone. To the best of the author’s knowledge this is the first non-trivial learning

result of this type. There are of course trivial enumerative algorithms that can strongly learn any
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S

NT 0

a

S

NT 0

NT 3

open

NT 4

NT 0

a

NT 1

implies

NT 0

c

NT 2

close

S

NT 0

NT 3

open

NT 4

NT 0

c

NT 1

implies

NT 0

NT 3

open

NT 4

neg

NT 0

b

NT 2

close

NT 2

close

Figure 2: Example parse trees for the sentential logic example. Each example has only one parse

tree.

non-redundant finite class of CFGs from positive data given a list of the elements of the class ordered

by inclusion, and as mentioned before, the algorithm presented by Angluin (1982) can be viewed

also as a strong learner for deterministic regular grammars. The Gold learning model is too onerous

and as a result the class of languages that can be learned is very limited, but nonetheless includes

some interesting natural examples as we showed in the previous section.

Strong learning is hard—accordingly we decompose it into two subproblems of rather different

flavors. The first is a weak learning algorithm, and the second is a component that converts a weak

learner to a strong learner; the latter component can be thought of as the computation of a canonical

form. In general it will not be possible to compute a canonical form for an arbitrary grammar as this

will be undecidable; however we may be able to do this for the grammars output by weak learners

which will typically produce grammars in a restricted class.

In this paper, we have chosen to work using the simplest type of weak learner, and using only

CFGs. The algorithm we have obtained therefore lacks some important features of natural language;

notably lexical ambiguity and displacement. It also relies on an overly strong language theoretic

closure property (substitutability) that natural languages do not satisfy. It is natural therefore to

extend this in two ways. Firstly instead of using congruence classes as the basis for the nonterminals

in the grammar, we can use syntactic concepts (Clark, 2013) which can be used to represent all
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CFGs, and secondly we can move from CFGs to a much richer class of grammars—the class of

well-nested multiple context-free grammars (Seki et al., 1991). The fundamental lemma is a nice

technical result which simplifies the algorithm and the proof; however we will not have such a clean

property in the case of larger classes of languages. Nonetheless we can extend the notion of a prime

congruence class naturally to the richer mathematical structures that we need to model the more

complex grammar formalisms required for natural language syntax.
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Appendix A.

This appendix contains the proofs of some technical lemmas that we use earlier that are not impor-

tant from a learning theoretic point of view, but merely concern the algebraic properties of substi-

tutable languages and their congruence classes. In all of the lemmas that follow, we assume we have

a fixed language L ∈ Lsc.

Lemma 28 If X is a prime, and Y is a congruence class which is not equal to X, then there is a

string in X which does not start with an element of Y .

Proof Suppose every string in X starts with Y . Let x,x′ be strings in X ; then x = yv and x′ = y′v′ for

some y,y′ ∈ Y and some other strings v,v′. Then v ≡ v′ by substitutability so X = Y [v] and X is not

prime.

Lemma 29 Suppose α = A1 . . .Am and β = B1 . . .Bn are sequences of primes such that ᾱ ⊇ β̄ then

there is some j, 1 ≤ j ≤ n such that A1 ⊇ B1 . . .B j.

Proof If B1 = A1 then we are done. Alternatively pick some element b1 ∈ B1 which does not start

with an element of A1 (by Lemma 28). Now let w be some string in B2 . . .Bn. Since b1w ∈ ᾱ we

must have some a1, p1 such that a1 = b1 p1, where a1 ∈ A1. If p1 ∈ B2 then B1B2 ⊆ A1, so j = 2

and we are done. Otherwise take some element of B2 that does not start with an element of [p1],
say b2. By the same argument we must have some a2 ∈ A1 and a p2 such that a2 = b1b2 p2, and

where b2 p2 ∈ [p1]. We repeat the process, and if we do not find some suitable j then we will have

constructed a string in β̄ which does not start with A1 which contradicts the assumption that β̄ ⊆ ᾱ.

Therefore there must be some j such that B1 . . .B j ⊆ A1.

Lemma 30 Suppose X is a prime, and α,β are strings of primes such that Xᾱ ⊆ X β̄, where X β̄ ⊆
Sub(L), then ᾱ ⊆ β̄.
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Proof Suppose α = A1 . . .Am and β = B1 . . .Bn are sequences of primes that satisfy the conditions

of the lemma. Take some string in ᾱ, say a. Let x be a shortest string in X . xa is in the set Xᾱ so we

must have xa = x′b, for some x′ ∈ X ,b ∈ β̄. Now x is the shortest string so either x = x′ and a = b

in which case the lemma holds, or |x′| > |x| in which case we have xcb = xa = x′b, for some non-

empty string c. So xc = x′ and x′,x are both in X so xc ≡ x. Therefore xcb ≡ xccb and so b ≡ cb, by

substitutability. Now we can write b as a sequence of elements of β say b = b1 . . .bn, where bi ∈ Bi.

Since we have some context (l,r) such that lbr ∈ L therefore lcbr ∈ L by substitutability we will

have b1 ≡ cb1 so cb1 ∈ B1 since it is a congruence class. This means that cb ∈ β so a ∈ β since

a = cb. So ᾱ ⊆ β̄.

An immediate corollary is this:

Lemma 31 If X is a prime, and α,β are strings of primes such that Xᾱ = X β̄, where X β̄ ⊆ Sub(L),
then ᾱ = β̄.

Lemma 32 If α and β are non-empty sequences of prime congruence classes such that ᾱ = β̄ = [ᾱ],
and ᾱ ⊆ Sub(L), then α = β.

Proof By induction on the length of the shortest string w in ᾱ. If this is 1 then clearly α = [w] = β.

Inductive step: suppose α = 〈A1 . . .Am〉 and β = 〈B1, . . .Bn〉. Since ᾱ ⊆ β̄, we know by Lemma 29

that there must be some i such that A1 . . .Ai ⊆ B1 and similarly, since β̄ ⊆ ᾱ, there must be some j

such that B1 . . .B j ⊆A1. Consider the shortest string w∈ ᾱ. This means that w= a1 . . .am = b1 . . .bn,

where ak ∈ Ak,bk ∈ Bk. This means that all of the ak,bk are the shortest strings in their respective

classes.

Suppose a1 6= b1. Without loss of generality assume that |a1|> |b1|. This implies that a1 = b1s,

for some s. Now as we have seen, A1 ⊇ B1 . . .Bi, so s ≡ b2 . . .bi, by substitutability. If |s|> |b2 . . .bi|
then a′1 = sb2 . . .bi would be an even shorter element of A1. If |s| < |b2 . . .bi| then b1sbi+1 . . .bn

would be a shorter element of β̄ (using the fact that β̄ = [β̄]. So s = b2 . . .bi and a1 = b1 . . .bi. This

means that a2 . . .am = bi+1 . . .bm.

Pick an a′ ∈ A1 which does not start with an element of B1 (which exists by Lemma 28). Con-

sider w′ = a′a2 . . .am which must also be equal to b′1 . . .b
′
n, where b′k ∈ Bk as before.

So a′ must be a prefix of b′1 which means that a′a2 . . .a j = b′1 by substitutability and so a j+1 . . .am =
b′2 . . .b

′
n. So |b′2 . . .b

′
n| = |a j+1 . . .am| < |a2 . . .am| = |bi+1 . . .bn| < |b2 . . .bn|, which is a contradic-

tion since b2, . . .bn are the shortest strings in B2 . . .Bn. So a1 = b1 and A1 = B1. By Lemma 31 and

by induction this means that α = β.

We now prove the ‘fundamental lemma’ of substitutable languages.

Lemma 33 Every non-zero non-unit congruence class has a unique prime factorisation.

Proof We show that every congruence class can be represented as a product of primes; uniqueness

then follows immediately by Lemma 32. Base case: the shortest string in X of length 1. (X is not

the unit, so we know it is not of length 0). Then it is prime, and can be represented uniquely as a

product of 1 prime, itself. Inductive step: suppose X is a congruence class whose shortest string is

of length k. If X is prime, then again it is uniquely representable so suppose it is not prime, and there
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is at least one decomposition into two congruence classes Y,Z. Y,Z must contain strings of length

less than k and so by the inductive hypothesis, Y and Z are both decomposable into sequences of

prime congruence classes, Y = Y1 . . .Yi and Z = Z1 . . .Z j so X = Y1 . . .YiZ1 . . .Z j.

Lemma 34 Suppose N is a prime and α,γ are nonempty sequences of primes such that N → γα is

a valid production. Then α is the prime decomposition of [ᾱ].

Proof By induction on the length of α. The base case where α is of length 1 is trivial by the defi-

nition of a prime decomposition. Inductive step: Let β be the prime decomposition of [ᾱ]. Clearly

ᾱ ⊆ β̄ and so by Lemma 29 we know that there is some j such that A1 . . .A j ⊆ B1. If j > 1 then

this would mean that the rule was pleonastic and thus not valid, therefore j = 1 and so A1 = B1; the

result follows by induction.

Lemma 35 G∗(L) only has a finite number of valid productions.

Proof Let n is the number of primes in the language L. Suppose we have two valid productions

N → Aα and N → Aβ, where N,A are primes and α,β are sequences of primes. Therefore by

Lemma 34 α = β, which means that there can be at most one production for each pair of primes

N,A; therefore the total number of branching productions is at most n2.
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