1 Properties of morphological systems

Stephen Anderson's brief entry in the Encyclopedia of Cognitive Science on morphology is worth reading if you haven't already.

https://cowgill.ling.yale.edu/sra/morphology_ecs.htm

Many thorny issues:

- 1. Paradigms
- 2. Productivity
- 3. Exceptions
- 4. Semi-productive exceptions
- 5. Phonological inteference
- 6. Phonological interference is exceptionful and semiproductive too (leaf/leaves and dwarf/dwarves but chief/chiefs and reef/reefs etc.)
- 7. item arrangement versus process

8. ...

2 Automata Theory

Acceptors

Is there a path through the machine for these strings?

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Transducers

Multiplying along paths

Boolean

Draw paths for the following strings which also show the outputs. Multiply the outputs with *conjunction*.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Counting

Draw paths for the following strings which also show the outputs. Multiply the outputs with addition.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Probability

Draw paths for the following strings which also show the outputs. Multiply the outputs with *multiplication*.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Strings

Draw paths for the following strings which also show the outputs. Multiply the outputs with *concatenation*. Note λ denotes the empty string.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Summing between paths

The above acceptors were *deterministic*. That is, at each state upon reading a letter, there was at most one transition arc to take. Consequently, there is at most one path for each string.

The ones below are *non-deterministic*, which means there can be more than one path for each string. You have to take them all and then sum up all the paths.

Probability

Draw all the paths for the string *baabaa* which also show the outputs. As before, along a path, multiplication is concatenation. Across paths, summing is *addition*.

So what is the probability of *baabaa* according to this transducer?

Strings

Draw all the paths for the string [darv] which also show the outputs. As before, along a path, multiplication is concatenation. Across paths, summing is *union*.

So what is the output of this transducer given the input [darv] 'dive'?