
RE & Negation
● Hi. My name is Tony and I’m a computer scientist
● Armchair interests here

○ Computational linguistics
○ PIE

1

RE & Negation
● REs in programming are about pattern-matching
● Matching numbers (decimal integer numerals) with REs

○ Numeral = string
○ Number = interpretation of numeral

● Informal: 0, or a decimal digit [1-9] maybe followed by digits [0-9], e.g.
○ 7
○ 8675309
○ 043 ❌ (but valid octal / base-8)
○ 3.1415927 ❌ (but valid floating-point / real)
○ 299792458

2

RE & Negation
● How to match (accept) with RE?

○ [123456789][0123456789]*

○ Programmers are lazy, above is too austere ⇒ use range shortcut
○ [1-9][0-9]*

○ Lazier ⇒ use meta-character shortcut
○ [1-9]\d*

○ If string is meant like an ID# then could perhaps relax first digit
○ \d\d*

○ Even lazier! Simply 1-or-more
○ \d+

3

RE & Negation
● Numeral must be digits all the way

○ 123a4

○ Is not a numeral
■ (well, it contains 2 of them, but the entire thing has an infraction @ “a”)

● Anchors:
○ “^” = start of string
○ “$” = end of string

● So
○ ^\d+$

4

RE & Negation
● But there’s a better/easier way!

○ Use test- negation / inversion (complement)
○ If any 1 character anywhere is NOT a digit, then we fail
○ So we can just match

■ \D = any single character NOT a digit
■ Austere: [^0123456789]
■ Or is this just … confusion?

● Here “^” isn’t an anchor, it also means “not” at the beginning of a character class
○ […]

○ Notes
■ No Kleene star
■ No anchors
■ First infraction = immediate fail

5

RE & Negation

if ($numeral =~ /^\d+$/) {
 # handle good case
}
else {
 # handle bad case
}

if ($numeral =~ /(\D)/) {
 # capture bad case, infraction = $1
}
else {
 # handle good case
}

6

