CSLI Studies in
Computational Linguistics

Finite State Morphology

Kenneth R. Beesley
Lauri Karttunen

S LI Cznen 1or the Stedy i
i and futormat

by, Nalion
PUBLICATIONS oiiad ¢ bt

54 A SYSTEMATIC INTRODUCTION

Regular expressions were originally invented as a metalanguage to describe
languages. The formalism was subsequently extended to describe relations. But ag
we have noted in many places, some operators can be applied only to a subset of
regular expressions. Let us now review this issue in more detail.

2.3.3 Closure

A set operation such as union has a corresponding operation on finite-state net-
works only if the set of regular relations and languages is CLOSED under that oper-
ation. Closure means that if the sets to which the operation is applied are regular,
the result is also regular, that is, encodable as a finite-state network.

Regular languages are closed with respect to all the common set operations in-
cluding intersection, subtraction and complementation (= negation). This follows
directly from Kleene’s proof. Regular relations are closed under concatenation,
iteration, union, and composition but not, in general, under intersection, comple-
mentation or subtraction (Kaplan and Kay, 1994; Roche and Schabes, 1997).

a:b O0:c 0:b a:c
; O:c ; ; a:c ;
P = [a:b]* [O:c]* Q = [0:b])* [a:c]*

Figure 2.2: Networks for Two Regular Relations

Kaplan and Kay give a simple example of a case in which the intersection of
two finite-state relations is not a finite-state relation. Consider two regular expres-
sions and the corresponding networks in Figure 2.2. P is the relation that maps
strings of any number of as into strings of the same number of bs followed by zero
or more ¢s. Q is the relation that maps strings of any number of as into strings of
the same number of cs preceded by zero or more bs.

Table 2.6 shows the corresponding string-to-string relations and their intersec-
tion. The left side of Table 2.6 is a partial enumeration of the P relation. The right
side partially enumerates the Q relation. The middle section of the table contains
the intersection of the two relations, that is, the pairs they have in common.

It is easy to see that the intersection contains only pairs that have on their
lower side (i.e. as the second component) a string that contains some number of bs
followed by exactly the same number of cs.

The lower-side language, b™c™, is not a finite-state language but rather a CON-
TEXT-FREE LANGUAGE, generated by a phrase-structure grammar that crucially
depends on center-embedding: S — ¢, S — b S c. Consequently it cannot be
encoded by a finite-state network (Hopcroft and Ullman, 1979). The same holds

2.3 SIMPLE REGULAR EXPRESSIONS 55

P P &Q Q
Regular Not Regular Regular
< 0 <L > <ML
<’ e> <, b>
<", cc> <, bb>
<a,b> <a,c>
<a, bc> <a, bc> <a, bc>
<a, bce> <a, bbc>
<a, beee> <a, bbbc>
<aa, bb> <aa, cc>
<aa, bbc> <aa, bcc>
<aa, bbcc> | <aa, bbcc> | <aa, bbce>
<aa, bbcce> <aa, bbbcc>
Table 2.6: Non-Regular Intersection of P and Q

of course for any relation involving this language. No operation on the networks in
Figure 2.2 can yield a finite-state transducer for the intersection of P and Q; such a
transducer does not exist.

The relations P and Q both have the property that a string in one language
corresponds to infinitely many strings in the other language because of the iterated
0:b and 0:c pairs. It is this characteristic, the presence of “one-sided epsilon
loops” in Figure 2.2 that makes it possible that their intersection be not regular.

From the fact that regular relations are not closed under intersection it follows
immediately that they are not closed under complementation either. Intersection
can be defined in terms of complementation and union. If regular relations were
closed under complementation, the same would be true of intersection. It also fol-
lows that regular relations are not closed under the subtraction operation, definable
by means of intersection and complementation.

The closure properties of regular languages and relations are summarized in
Table 2.7 for the most common operations.

Although regular relations are not in general closed under intersection, a subset
of regular relations have regular intersections. In particular, equal-length relations,
relations between pairs of strings that are of the same length, are closed under
intersection, subtraction and complementation. Such relations can be encoded by
a transducer that does not contain any epsilon symbols.!

'This fact is important for us because it is the formal foundation of the two-

56 A SYSTEMATIC INTRODUCTION

Operation Regular Languages | Regular Relations
union yes yes
concatenation yes yes
iteration yes yes
reversal yes yes
intersection yes no
subtraction yes no
complementation yes no
composition (not applicable) yes
inversion (not applicable) yes

Table 2.7: Closure Properties

The Xerox calculus allows intersection to apply to all simple automata and
to transducers that do not contain any one-sided epsilon pairs. The test is more
restrictive than it should be in principle because the presence of one-sided epsilons
in a transducer does not necessarily indicate that the relation it encodes is of the
type that could yield a non-regular intersection.

2.3.4 The ANY Symbol

So far we have given examples of regular expressions and the corresponding net-
works for most of the operators introduced in Section 2.3.1. One notable exception
is complementation. We will come to that shortly but first we need to understand
the semantics of the ANY symbol, ?, introduced in the beginning of Section 2.3.1
as one of the atomic expressions.

Let us recall that the term complement of a language A, denoted by \A, is the
union of the single-symbol strings that are not in A. For example, the language
[\a] contains “b”, “c”, ...“z”. In fact [\a] is an infinite language because
the set of atomic symbols is in principle unbounded. Our symbol alphabet is not
restricted to the 26 letters of the English alphabet or to the 256 ASCII characters.

For this reason we provide a special regular-expression symbol, ?, to represent
the infinite set of symbols in some yet unknown alphabet. It is called the ANY sym-
bol. The regular expression ? denotes the language of all single-symbol strings.
Note that this set does not include the empty string. Because we do not make a
distinction between a language and an identity relation, ? can also be interpreted
as the relation that maps any symbol into itself. The corresponding network is
obviously the one in Figure 2.3. But note the annotation Sigma: {?}. We will
explain it shortly.

level rule formalism called twolc, which is included on the CD-ROM and described on
http://www.fsmbook.com/. Transducers compiled from two-level rules can be intersectcd
because the 0 symbol is treated as an ordinary symbol in the rule formalism and not as an empty
string.

